The evaluation of genetic diversity among the accessions of a germplasm collection results in information about promising materials suitable for breeding programs. Thus, the goal of this work was to characterize Capsicum baccatum accessions from different Brazilian regions, based on morphological, biochemical and molecular traits, aiming to support chili pepper breeding programs. The fruits were morphologically characterized based on fruit length, diameter, fresh mass and pericarp thickness, and biochemically analyzed for their content in ascorbic and phenolic acids, flavonoid and antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and ferric reducing antioxidant power (FRAP) assays. All phenotypic traits showed significant differences among the chili pepper accessions, indicating a wide variability.The fruits were also characterized using amplified fragment length polymorphism (AFLP) molecular markers. The combination of six AFLP primers resulted in 1117 bands, 1033 of which were polymorphic. Divergence between accessions was estimated by the Ward's hierarchical agglomerative clustering method, resulting in three and two clusters for fruit phenotypic traits and molecular data, respectively. In Bayesian analysis, molecular data also clustered the accessions in two groups. There was no association between the phenotypic descriptors and AFLP markers, indicating that both characterizations are important to better understand the genetic variability. Furthermore, it was not possible to group the accessions solely based on their origin for neither phenotypic descriptors and AFLP markers. The accessions G1, G5, G6, and G20 showed interesting characteristics and can be used in breeding programs, aiming the development of Capsicum spp. cultivars with desirable morphological and biochemical traits.
The snap bean (Phaseolus vulgaris L.) is an economically important legume worldwide due to its good nutritional quality, being considered as a source of protein, fibre, vitamins and minerals. Furthermore, snap beans present high phenolic compound levels and antioxidant activity, factors that contribute in the prevention of the oxidation effects by free radicals. Hence, the present study characterized five snap bean genotypes (UEL 1, UEL 2, UEL 405, UEL 415 and Alessa) with respect to their amino acid concentrations, total phenolic compound contents and antioxidant activities. The amino acid analysis indicated that UEL 415 showed the highest glutamic acid content (12.9 g / 100 g) and UEL 2 the highest histidine content (2.27 g / 100 g). However, only the UEL 1 genotype showed the highest total phenolic compound content (0.492 mg GAE / 100 g) and highest antioxidant activity according to DPPH• radical scavenging (64.71%). The UEL 1, UEL 2 and UEL 415 genotypes presented desirable chemical characteristics for genetic improvement programmes and their commercial exploitation by food industries.
Snap beans have been widely used in organic farming as a good income source and an alternative to diversify production, with increasing use in crop rotation. This work reports the evaluation of 25 bush-type snap beans accessions for their suitability to integrate a breeding program for organic farming, as well as for their resistance to the common bacterial blight (CBB). Agronomic performance was assessed in two field experiments (September-December, 2013; April-June, 2014), in complete blocks at random, while resistance to CBB was assessed in greenhouse, in a completely randomized trial. Plants were challenged with two isolates, one from Xanthomonas axonopodis pv. phaseoli and another from X. fuscans subsp. fuscans. Accessions UEL 402, UEL 405, UEL 407, UEL 408, UEL 412, UEL 417 and UEL 420 were highly productive in both seasons (averages of 10.3, 8.7, 9.5, 9.2, 8.9, 9.3 and 9.2 t/ha, respectively), and are promising for use both as cultivars by organic farmers in the region of Londrina and also as germplasm in breeding programs for developing cultivars adapted to the region. Although all accessions were moderately susceptible to CBB, accessions UEL 407, UEL 409, UEL 411, UEL 412, UEL 424 and UEL 431 presented the lowest values for the area under CBB progress curve for both isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.