One of the trending topics in 2020 to 2022 is tweets about Coronavirus Disease 2019 (COVID-19). A large number of tweets regarding COVID-19 that have appeared have been mixed and not grouped properly, making it difficult for Twitter users to read and sort them based on the information they want. One solution that can be applied to overcome the problems described is through clustering of tweets information about COVID-19. In this study, researchers used quantitative research with the K-Means method, which is one of the clustering methods used in grouping data. The data used in this study is a dataset taken from Kaggle, namely Omicron-Covid-19 Variant Tweets, and also taken through a scraping process with Bright Data with a total of 4,103 datasets. The results showed that determining the best cluster using the Elbow method on the dataset produced empirical evidence that the best cluster was k = 5. The results of grouping tweets regarding COVID-19 using the K-Means Clustering method with k = 5 resulted in the largest number of cluster members being cluster 4 with 1,185 tweets, the second largest was cluster 1 with 1,047 tweets, the third largest was cluster 2 with 757 tweets, the fourth largest was cluster 3 as many as 744 tweets, and the smallest number of cluster members is cluster 5 as many as 370 tweets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.