Coffee is consumed not just for its flavor, but also for its health advantages. The quality of coffee beverages is affected by a number of elements and a series of processes, including: the environment, cultivation, post-harvest, fermentation, storage, roasting, and brewing to produce a cup of coffee. The chemical components of coffee beans alter throughout this procedure. The purpose of this article is to present information about changes in chemical components and bioactive compounds in coffee during preharvest and postharvest. The selection of the appropriate cherry maturity level is the first step in the coffee manufacturing process. The coffee cherry has specific flavor-precursor components and other chemical components that become raw materials in the fermentation process. During the fermentation process, there are not many changes in the phenolic or other bioactive components of coffee. Metabolites fermented by microbes diffuse into the seeds, which improves their quality. A germination process occurs during wet processing, which increases the quantity of amino acids, while the dry process induces an increase in non-protein amino acid γ-aminobutyric acid (GABA). In the roasting process, there is a change in the aroma precursors from the phenolic compounds, especially chlorogenic acid, amino acids, and sugars found in coffee beans, to produce a distinctive coffee taste.
Combining intelligent and active packaging serves the dual purpose of detecting color changes in food that reflect changes in its quality and prolonging its shelf life. This study developed an intelligent and active packaging system made from the cellulose of Acetobacter xylinum and assessed its ability to detect changes in the quality and to increase shelf-life of packaged fresh beef. The properties of the intelligent packaging’s sensor and active packaging films were determined. The application of this system to fresh beef stored at room temperature (28 ± 2 °C) for 24 h was tested. The color of the bromothymol blue (BTB) solution (pH 2.75) in the indicator of the intelligent packaging system changed from orange to dark green to indicate that beef quality changed from fresh to rotten. The meat treated with the active packaging with 10% and 15% garlic extract decayed on the 16th h. In contrast, the meat treated with the active packaging without the garlic extracts rotted on the 12th h. The shift in the indicator’s color was linearly related to the total plate count (TPC), total volatile basic nitrogen (TVBN), and pH of the meat packaged using the active packaging system. Therefore, BTB solution (pH 2.75) can be used as an intelligent packaging indicator that will allow consumers to assess the quality of packaged meat easily. As an antimicrobial agent, the addition of 10–15% garlic extract to the active packaging films can help delay the spoilage of packaged beef.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.