Carbon fibre-reinforced polymer (CFRP) composite materials play an increasingly important role in modern manufacturing, and they are among the more prominent materials used in aircraft manufacturing today. However, CFRP is highly prone to delamination and other damage when drilled due to it being extremely strong with a good strength-to-weight ratio and high thermal conductivity. Because of this problem and CFRP’s growing importance in aircraft manufacture, research has focused on the entry and exit holes as indicators of damage occurrence during drilling of screws, rivets, and other types of holes. The inside of the hole was neglected in past research and a proper way to quantify the internal side of a hole by combining the entry and exit hole should be included. To fill this gap and improve the use of CFRP, this paper reports a novel technique to measure the holes by using the extension of the adjusted delamination factor (SFDSR) for drilling thick CFRP composites in order to establish the influence of machining input variables on key output measures, i.e., delamination and other damages. The experimental results showed a significant difference in interpretation of the damage during the analysis. Improvement was made by providing better perspectives of identifying hole defects.
The objective of this study was to develop a method for the effective use of both pruned wood and porcelain stone scrap. Thus, we manufactured a wood-porcelain stone composite board, which has excellent waterproof property and incombustibility properties. In addition, we examined the conditions needed to manufacture the woodporcelain stone composite board as a construction material and evaluated the physical and mechanical properties of this board based on the Japanese Industrial Standard. The main results obtained were as follows: the wood-porcelain stone composite board made from pruned wood and porcelain stone scrap had excellent thickness swelling performance and the board had incombustibility properties that were better than commercial oriented strand board. In both single-layer and three-layer composite boards with weight ratios of porcelain stone particles of 40%, the internal bond strength exceeded the standard value of type 18 particleboard of JIS A 5908. However, the bending properties of the composite board were inferior to the type 18 particleboard standard. Therefore, it will be necessary to improve the bending properties of the board by changing the particle sizes of both the porcelain stone scrap and the pruned wood component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.