The spermatogenesis process is complex and delicate, and any error in a step may cause spermatogenesis arrest and even male infertility. According to our previous transcriptomic data, CEP70 is highly expressed throughout various stages of human spermatogenesis, especially during the meiosis and deformation stages. CEP70 is present in sperm tails and that it exists in centrosomes as revealed by human centrosome proteomics. However, the specific mechanism of this protein in spermatogenesis is still unknown. In this study, we found a heterozygous site of the same mutation on CEP70 through mutation screening of patients with clinical azoospermia. To further verify, we deleted CEP70 in mice and found that it caused abnormal spermatogenesis, leading to male sterility. We found that the knockout of CEP70 did not affect the prophase of meiosis I, but led to male germ-cell apoptosis and abnormal spermiogenesis. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis, we found that the deletion of CEP70 resulted in the abnormal formation of flagella and acrosomes during spermiogenesis. Tandem mass tag (TMT)-labeled quantitative proteomic analysis revealed that the absence of CEP70 led to a significant decrease in the proteins associated with the formation of the flagella, head, and acrosome of sperm, and the microtubule cytoskeleton. Taken together, our results show that CEP70 is essential for acrosome biogenesis and flagella formation during spermiogenesis.
Mitochondria are essential organelles that provide energy for mammalian cells and participate in multiple functions, such as signal transduction, cellular differentiation, and regulation of apoptosis. Compared with the mitochondria in somatic cells, oocyte mitochondria have an additional level of importance since they are required for germ cell maturation, dysfunction in which can lead to severe inherited disorders. Thus, a systematic proteomic profile of oocyte mitochondria is urgently needed to support the basic and clinical research, but the acquisition of such a profile has been hindered by the rarity of oocyte samples and technical challenges associated with capturing mitochondrial proteins from live oocytes. Here, in this work, using proximity labeling proteomics, we established a mitochondria-specific ascorbate peroxidase (APEX2) reaction in live GV-stage mouse oocytes and identified a total of 158 proteins in oocyte mitochondria. This proteome includes intrinsic mitochondrial structural and functional components involved in processes associated with “cellular respiration”, “ATP metabolism”, “mitochondrial transport”, etc. In addition, mitochondrial proteome capture after oocyte exposure to the antitumor chemotherapeutic cisplatin revealed differential changes in the abundance of several oocyte-specific mitochondrial proteins. Our study provides the first description of a mammalian oocyte mitochondrial proteome of which we are aware, and further illustrates the dynamic shifts in protein abundance associated with chemotherapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.