The male sterility system in hybrid seed production can eliminate the cost of emasculation and ensure seed hybridity through avoidance of self pollination. GMS and CMS are two types of male sterility system that currently employed in pepper breeding. Conversion from GMS to CMS will increase the male sterility proportion of female parent from 50 to 100%. In this study, segregation analysis of four male sterile mutants consisting of one CMS mutant (CA1) and three GMS mutants (GA1, GA3 and GA4) showed that each had single recessive gene inheritance. A modified complementation test was performed by replacing male sterile mutants with their maintainer line as male parent. The nuclear restorer gene for CMS was independent of all nuclear restorer genes for GMS and all nuclear restorer genes for GMS were independent each other. Further observation on CMS and GMS male sterility loci revealed that GA1 and GA3 had mutated in both nuclear restorer genes for CMS and GMS, while CA1 and GA4 each carried mutation in single male sterility system of nuclear restorer gene for CMS and GMS, respectively. Conversion from GMS to CMS in the case of lines carried mutations in both sterility systems required only S-type cytoplasm donor, while lines carried mutation in single nuclear restorer gene for GMS required not only S-type cytoplasm but also rf allele donors. The important finding is the broader function of maintainer line in certain male sterility system that can be used as a maintainer or restorer line for other male sterility systems. We also confirmed that line CC1 is the general restorer for both CMS and GMS systems
Three primary species from the Begomovirus genus, Pepper yellow leaf curl Indonesia virus (PepYLCIV), Tomato yellow leaf curl Kanchanaburi virus (TYLCKaV), and Tomato leaf curl New Delhi virus (ToLCNDV), are suspected of spreading throughout pepper production centers, and plants are infected by a single species or a combination of two or three species. This study was conducted to provide complete information about the symptoms, incidence and severity, whitefly biotypes, as well as the dominance status of the three Begomovirus species in pepper-producing areas in Java. A DNA analysis was carried out on leaf samples to identify Begomovirus species and biotypes of B. tabaci collected from 18 areas (16 districts) in lowlands (<400 m asl) and highlands (>700 m asl). The DNA analysis showed that B. tabaci biotype B was the most commonly detected in all locations compared to the A, AN, and Q biotypes. The incidence of begomovirus infection was at a high level, 93% and 88.78% in the lowlands and highlands, respectively. However, the severity of begomovirus infection was significantly higher in the lowlands (54.50%) than in the highlands (38.11%). A single infection of PepYLCIV was most dominant in all locations sampled and caused severe infection, followed by a mixed infection with TYLCKaV. Therefore, the current status of begomovirus infection, especially PepYLCIV, can provide advice to farmers using more tolerant and resistant varieties as well as a breeding strategy for resistant pepper varieties.
Non-pungent bell pepper (Capsicum annuum L.) lacks the cytoplasmic male sterility (CMS) nuclear restorer allele, Rf, and CMS cannot be employed in its F 1 hybrid seed production. To demonstrate that the genic male sterility (GMS) system in non-pungent bell pepper can be converted to the CMS male sterility system, the conversion of GMS to CMS for non-pungent bell pepper line GC3 was conducted by introgression of S-type cytoplasm and the Rf allele from tropical pungent donors. After morphological traits were evaluated, two lines from BC 1 F 1 containing S-type cytoplasm and four lines from BC 2 F 2 containing Rf allele, phenotypically similar to GC3, were obtained and could be employed as CMS male sterile lines and restorer lines for non-pungent bell pepper. Four molecular markers potentially linked to traits of interest were also evaluated in BC 1 F 1 and BC 1 F 2 populations. This is the first time that GMS has been successfully converted to CMS in bell pepper, a significant contribution for bell pepper hybrid seed production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.