The purpose of this paper is to explore the effectiveness and applicability of Maximum Likelihood Factor Analysis (MLFA) method on stock price performance. This method identifies the variables according to their co-movement and variability and builds a model that can be useful for prediction and ranking or classification. The results of factor analysis in this study provide a guide as far as investment decision is concerned. Stock price performance of the seven well-known and biggest companies listed in the Johannesburg stock exchange (JSE) was used as an experimental unit. Monthly data was available for the period 2010 to 2014.Details of a trivariate factor model is: Factor 1 comprises of Absa and Standard Bank (Financial sectors), Factor 2 has Shoprite and Pick ‘n Pay (Retail sectors) while Factor 3 collected Vodacom MTN and Sasol (Industrial sectors). The companies contribute 46.9%, 12.7% and 10.8% respectively to the three sectors and these findings are confirmed by a Chi-square and the Akaike information criterion to be valid. The three factors are also diverse and reliable according to Tucker and Lewis and Cronbach’s coefficients. The findings of this study give economic significance and the study is relevant as it gives investors and portfolio manager’s sensible investment reference.Keywords: Maximum Likelihood Factor Analysis, stock prices
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.