Background African Americans (AAs) are at a higher risk for developing type 2 diabetes compared with non-Hispanic whites (NHWs). The causal role of β-cell glucose sensitivity (β-GS) and insulin clearance in hyperinsulinemia in AA adults is unclear. Objective Using a cross-sectional study design, we compared β-cell function and insulin clearance in nondiabetic AAs (n = 36) and NHWs (n = 47) after a mixed meal test (MMT). Methods Insulin secretion rate, glucose sensitivity, rate sensitivity, and insulin sensitivity during MMT were derived from a mathematical model. Levels of insulin-degrading enzyme (IDE) and carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1), key players in insulin clearance, were measured (by enzyme-linked immunosorbent assay) in hepatic cytosolic fractions from age-, sex-, and body mass index–matched AA and NHW cadaveric donors (n = 10). Results Fasting and mean postprandial plasma glucose levels were similar in both ethnic groups. AAs had significantly higher fasting and mean postprandial plasma insulin levels. However, fasting ISR, total insulin output, and insulin sensitivity during MMT were not different between the groups. β-GS and rate sensitivity were higher in AAs. Fasting and meal plasma insulin clearance were lower in AAs. Hepatic levels of IDE and CEACAM-1 were similar in AAs and NHWs. Hepatic IDE activity was significantly lower in AAs. Conclusions In this study, lower insulin clearance contributes to higher plasma insulin levels in AAs. Reduced insulin clearance may be explained by lower IDE activity levels in AAs. Further confirmatory studies are needed to investigate diminished insulin clearance in AAs as a result of lower IDE activity levels.
Background Primary insulin hypersecretion predicts type 2 diabetes (T2DM) independent of insulin resistance. Enhanced β-cell glucose responsivity contributes to insulin hypersecretion. African Americans (AAs) are at a higher risk for T2DM than non-Hispanic Whites (NHWs). Whether AAs manifest primary insulin hypersecretion is an important topic that has not been examined systematically. Objective To examine if nondiabetic AA adults have a higher β-cell glucose responsivity compared with NHWs. Methods Healthy nondiabetic AA (n = 18) and NHW (n=18) subjects were prospectively recruited. Indices of β-cell function, acute C-peptide secretion (X0); basal (Φ B), first-phase (Φ 1), second-phase (Φ 2), and total β-cell responsivity to glucose (Φ TOT), were derived from modeling of insulin, C-peptide, and glucose concentrations during an intravenous glucose tolerance test. Insulin sensitivity was assessed by the hyperinsulinemic–euglycemic glucose clamp technique. Results Glucose disposal rate (GDR) during clamp was similar in AAs and NHWs (GDR: [AA] 12.6 ± 3.2 vs [NHW] 12.6 ± 4.2 mg/kg fat free mass +17.7/min, P = .49). Basal insulin secretion rates were similar between the groups. AA had significantly higher X0 (4423 ± 593 vs 1807 ± 176 pmol/L, P = .007), Φ 1 [377.5 ± 59.0 vs 194.5 ± 26.6 (109) P = 0.03], and Φ TOT [76.7 ± 18.3 vs 29.6 ± 4.7 (109/min), P = 0.03], with no significant ethnic differences in Φ B and Φ 2. Conclusions Independent of insulin sensitivity, AAs showed significantly higher first-phase and total β-cell responsivity than NHWs. We propose that this difference reflects increased β-cell responsivity specifically to first-phase readily releasable insulin secretion. Future studies are warranted to identify mechanisms leading to primary β-cell hypersensitivity in AAs.
Background: Tibiofemoral bone bruise patterns seen on magnetic resonance imaging (MRI) are associated with ligamentous injuries in the acutely injured knee. Bone bruise patterns in multiligament knee injuries (MLKIs) and particularly their association with common peroneal nerve (CPN) injuries are not well described. Purpose: To analyze the tibiofemoral bone bruise patterns in MLKIs with and without peroneal nerve injury. Study Design: Case series; Level of evidence, 4. Methods: We retrospectively identified 123 patients treated for an acute MLKI at a level 1 trauma center between January 2001 and March 2021. Patients were grouped into injury subtypes using the Schenck classification. Within this cohort, patients with clinically documented complete (motor and sensory loss) and/or partial CPN palsies on physical examination were identified. Imaging criteria required an MRI scan on a 1.5 or 3 Tesla scanner within 30 days of the initial MLKI. Images were retrospectively interpreted for bone bruising patterns by 2 board-certified musculoskeletal radiologists. The location of the bone bruises was mapped on fat-suppressed T2-weighted coronal and sagittal images. Bruise patterns were compared among patients with and without CPN injury. Results: Of the 108 patients with a MLKI who met the a priori inclusion criteria, 26 (24.1%) were found to have a CPN injury (N = 20 complete; N = 6 partial) on physical examination. For CPN-injured patients, the most common mechanism of injury was high-energy trauma (N = 19 [73%]). The presence of a grade 3 posterolateral corner (PLC) injury (N = 25; odds ratio [OR], 23.81 [95% CI, 3.08-184.1]; P = .0024), anteromedial femoral condyle bone bruising (N = 24; OR, 21.9 [95% CI, 3.40-202.9]; P < .001), or a documented knee dislocation (N = 16; OR, 3.45 [95% CI, 1.38-8.62]; P = .007) was significantly associated with the presence of a CPN injury. Of the 26 patients with CPN injury, 24 (92.3%) had at least 1 anteromedial femoral condyle bone bruise. All 20 (100%) patients with complete CPN injury also had at least 1 anteromedial femoral condyle bone bruise on MRI. In our MLKI cohort, the presence of anteromedial femoral condyle bone bruising had a sensitivity of 92.3% and a specificity of 64.6% for the presence of CPN injury on physical examination. Conclusion: In our MLKI cohort, the presence of a grade 3 PLC injury had the greatest association with CPN injury. Additionally, anteromedial femoral condyle bone bruising on MRI was a highly sensitive finding that was significantly correlated with CPN injury on physical examination. The high prevalence of grade 3 PLC injuries and anteromedial tibiofemoral bone bruising suggests that these MLKIs with CPN injuries most commonly occurred from a hyperextension-varus mechanism caused by a high-energy blow to the anteromedial knee.
Background: Bone bruise patterns in the knee can aid in understanding the mechanism of injury in anterior cruciate ligament (ACL) ruptures. There is no universally accepted magnetic resonance imaging (MRI) mapping technique to describe the specific locations of bone bruises. Hypothesis: The authors hypothesized that (1) our novel mapping technique would show high interrater and intrarater reliability for the location of bone bruises in noncontact ACL-injured knees and (2) the bone bruise patterns reported from this technique would support the most common mechanisms of noncontact ACL injury, including valgus stress, anterior tibial translation, and internal tibial rotation. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Included were 43 patients who underwent ACL reconstruction between 2018 and 2020, with MRI within 30 days of the injury on a 3.0-T scanner, documentation of a noncontact mechanism of injury, and no concomitant or previous knee injuries. Images were retrospectively reviewed by 2 radiologists blinded to all clinical data. The locations of bone bruises were mapped on fat-suppressed T2-weighted coronal and sagittal images using a novel technique that combined the International Cartilage Repair Society (ICRS) tibiofemoral articular cartilage surgical lesions diagram and the Whole-Organ Magnetic Resonance Imaging Scoring (WORMS) mapping system. Reliability between the reviewers was assessed using the intraclass correlation coefficient (ICC), where ICC >0.90 indicated excellent agreement. Results: The interrater and intrarater ICCs were 0.918 and 0.974, respectively, for femoral edema mapping and 0.979 and 0.978, respectively, for tibial edema mapping. Significantly more bone bruises were seen within the lateral femoral condyle compared with the medial femoral condyle (67% vs 33%; P < .0001), and more bruises were seen within the lateral tibial plateau compared with the medial tibial plateau (65% vs 35%; P < .0001). Femoral bruises were almost exclusively located in the anterior/central regions (98%) of the condyles as opposed to the posterior region (2%; P < .0001). Tibial bruises were localized to the posterior region (78%) of both plateaus as opposed to the anterior/central regions (22%; P < .0001). Conclusion: The combined mapping technique offered a standardized and reliable method for reporting bone bruises in noncontact ACL injuries. The contusion patterns identified using this technique were indicative of the most commonly reported mechanisms for noncontact ACL injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.