Islet amyloid polypeptide (IAPP, amylin) is the major protein component of islet amyloid deposits associated with type 2 diabetes. The polypeptide lacks a well–defined structure in its monomeric state, but readily assembles to form amyloid. Amyloid fibrils formed from IAPP, intermediates generated in the assembly of IAPP amyloid, or both are toxic to β-cells suggesting that islet amyloid formation may contribute to the pathology of type 2 diabetes. There are relatively few reported inhibitors of amyloid formation by IAPP. Here we show that the tea–derived flavanol, (−)-Epigallocatechin 3-Gallate, [(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate], (EGCG), is an effective inhibitor of in vitro IAPP amyloid formation and disaggregates preformed amyloid fibrils derived from IAPP. The compound is thus one of a very small set of molecules which have been shown to disaggregate IAPP amyloid fibrils. Fluorescence detected thioflavin-T binding assays and transmission electron microscopy confirm that the compound inhibits unseeded amyloid fibril formation as well as disaggregates IAPP amyloid. Seeding studies show that the complex formed by IAPP and EGCG does not seed amyloid formation by IAPP. In this regard, the behavior of IAPP is similar to the reported interactions of Aβ and α–synuclein with EGCG. Alamar blue assays and light microscopy indicate that the compound protects cultured rat INS-1 cells against IAPP–induced toxicity. Thus, EGCG offers an interesting lead structure for further development of inhibitors of IAPP amyloid formation and compounds that disaggregate IAPP amyloid.
The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.
The 37-residue islet amyloid polypeptide (IAPP) is the major protein component of the amyloid deposits found in type-II diabetes. IAPP is stored in a relatively low pH environment in the pancreatic secretory granules prior to its release to the extracellular environment. Human IAPP contains a single histidine at position 18. Aggregation of IAPP is considerably faster at a lower pH (4.0 +/- 0.3) than at high pH (8.8 +/- 0.3), as judged by turbidity and thioflavine-T fluorescence studies. The rate of aggregation at low pH increases drastically in the presence of salt. CD experiments show that the conversion of largely unstructured monomers to beta-sheet-rich structures is faster at high pH. TEM studies show that fibrils are formed at both pH values but are more prevalent at pH 8.8 (+/-0.3). Both the free N terminus of IAPP and His-18 will titrate over the pH range studied. An N-terminal acetylated fragment consisting of residues 8-37 of human IAPP was also studied to isolate contributions from the protonation of His-18. Previous studies have shown that this fragment forms protofibrils that are very similar to those formed by intact IAPP. The effects of varying the protonation state of His-18 in the 8-37 analogue indicate that the rate of aggregation and fibril formation is noticeably faster when His-18 is deprotonated, similar to the wild type. However, the pH-dependent effects are larger for full-length IAPP than for the disulfide-truncated, acetylated analogue. TEM studies indicate differences in the morphology of the deposits formed at high and low pH. These results are discussed in light of recent structural models of IAPP fibrils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.