This study has highlighted the beneficial effects of LA pretreatment in reversing the damages caused by ADR, by bringing about an improvement in the reductive status of the cell.
Adriamycin, which is widely used in the treatment of various neoplastic conditions, exerts toxic effects in several organs. Adriamycin nephrotoxicity has been recently documented in a variety of animal species. The present study was designed to investigate the effect of lipoic acid on the nephrotoxic potential of adriamycin. The study was carried out with adult male albino rats of Wistar strain. Test animals were divided into four groups of six rats each as follows: Group I (control) received only normal saline throughout the course of the experiment. Group II (ADR) received intravenous injections of adriamycin through the tail vein (1 mg kg(-1) body wt day(-1)) once a week for a period of 12 weeks. Group III (LA) received lipoic acid (35 mg kg(-1) body wt day(-1)) intraperitoneally once a week for a period of 12 weeks. Group IV (ADR + LA) received a single injection of lipoic acid intraperitoneally 24 h prior to the administration of adriamycin through the tail vein once a week for a period of 12 weeks. Intravenous injections of adriamycin resulted in decreased activities of the glycolytic enzymes; hexokinase, phosphoglucoisomerase, aldolase and lactate dehydrogenase in the rat renal tissue. The gluconeogenic enzymes, glucose-6-phosphatase and fructose-1,6-diphosphatase, showed a decline in their activities on adriamycin administration. The transmembrane enzymes namely the Na+,K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and the brush-border enzyme alkaline phosphatase also showed a decrease in their activities. This decrease in the activities of ATPases and alkaline phosphatase suggests basolateral and brush-border membrane damage. Decreased activities of the TCA cycle enzymes isocitrate dehydrogenase, succinate dehydrogenase and malate dehydrogenase, suggest a loss in mitochondrial function and integrity. Nephrotoxicity was evident from the increased excretions of N-acetyl-beta-D-glucosaminidase and gamma-glutamyl transferase in the urine of adriamycin administered rats. These biochemical disturbances were effectively counteracted on pre-treatment with lipoic acid, which brought about an increase in the activities of glycolytic enzymes, ATPases and the TCA cycle enzymes. On the other hand, the gluconeogenic enzymes showed a further decrease in their activities on lipoic acid pretreatment. LA pretreatment also restored the activities of the urinary enzymes to normal. These observations shed light on the nephroprotective action of lipoic acid rendered against experimental aminoglycoside toxicity.
Adriamycin widely used in the treatment of neoplastic conditions is nephrotoxic. In the present study the protective effect of lipoic acid was investigated in adriamycin-induced nephrotoxicity in adult male albino Wistar rats. Adriamycin-induced nephrotoxicity was characterized by hyperlipidemia, proteinuria, and hypoproteinemia, by decreased activities of the enzymes N-acetyl-beta-D-glucosaminidase and cathepsin D, by increased lipid peroxidation and decreases in serum catalase and glutathione activities, and by increased urinary and serum urea, creatinine and urinary glycosaminoglycans. Pretreatment with lipoic acid restored the changes, indicating that lipoic acid is renoprotective in adriamycin nephrotoxicity.
Adriamycin, which is widely used in the treatment of various neoplastic conditions, exerts toxic effects in many organs. The present study was designed to investigate the effect of lipoic acid upon adriamycin induced peroxidative damages in rat kidney. The increase in peroxidated lipids on adriamycin administration was accompanied by alterations in the antioxidant defense systems. The extent of nephrotoxicity induced by adriamycin was evident from the decreased activities of the enzymes gamma-glutamyl transferase and beta-glucuronidase in the rat renal tissues. The study was carried out with adult male albino rats of Wistar strain, which comprised of one control and three experimental groups. Group I rats served as controls. Group II rats received adriamycin (1 mg kg(-1) body wt day(-1)) intravenously through the tail vein. Group III rats were given lipoic acid (35 mg kg(-1) body wt day(-1)) intraperitoneally. Group IV rats were given lipoic acid 24 h before the administration of adriamycin. Rats subjected to adriamycin administration showed a decline in the thiol capacity of the cell accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione metabolizing enzymes (glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione-S-transferase). Lipoic acid pretreatment also restored the activities of gamma-glutamyl transferase and beta-glucuronidase nearly to control levels thereby suggesting nephroprotection. The study has highlighted the beneficial effects of lipoic acid pretreatment in reversing the damages caused by adriamycin and thereby bringing about an improvement in the oxidative stress parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.