Bio‐nano hybrids with methanogens and nano‐semiconductors provide an innovative strategy for solar‐driven CO2‐to‐CH4 conversion; however, the efficiency mismatch between electron production and utilisation results in low quantum yield and CH4 selectivity. Herein, we report the integration of metal‐free polymeric carbon nitrides (CNx) decorated with cyanamide (NCN) groups and Methanosarcina barkeri (M. b). The self‐assembled M. b‐NCNCNx exhibited a quantum yield of 50.3 % with 92.3 % CH4 selectivity under illumination, which outperforms other reported bio‐nano hybrid systems and photocatalytic systems for CO2 reduction. This excellent performance was attributed to the distinct capacitance and conductive effects of NCNCNx, which promoted electron storage and redistribution at the biotic–abiotic interface to alleviate recombination losses and side reaction. This study provides new design guidelines for bio‐nano hybrids for the sustainable photocatalytic reduction of CO2 into fuels.
This paper proposes a scheme for indoor positioning by fusing floor map, WiFi and smartphone sensor data to provide meter-level positioning without additional infrastructure. A topology-constrained K nearest neighbor (KNN) algorithm based on a floor map layout provides the coordinates required to integrate WiFi data with pseudo-odometry (P-O) measurements simulated using a pedestrian dead reckoning (PDR) approach. One method of further improving the positioning accuracy is to use a more effective multi-threshold step detection algorithm, as proposed by the authors. The “go and back” phenomenon caused by incorrect matching of the reference points (RPs) of a WiFi algorithm is eliminated using an adaptive fading-factor-based extended Kalman filter (EKF), taking WiFi positioning coordinates, P-O measurements and fused heading angles as observations. The “cross-wall” problem is solved based on the development of a floor-map-aided particle filter algorithm by weighting the particles, thereby also eliminating the gross-error effects originating from WiFi or P-O measurements. The performance observed in a field experiment performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building on the China University of Mining and Technology (CUMT) campus confirms that the proposed scheme can reliably achieve meter-level positioning.
The height of F2 peak (hmF2) is an essential ionospheric parameter and its variations can reflect both the earth magnetic and solar activities. Therefore, reliable prediction of hmF2 is important for the study of space, such as solar wind and extreme weather events. However, most current models are unable to forecast the variation of the ionosphere effectively since real-time measurements are required as model inputs. In this study, a new Australian regional hmF2 forecast model was developed by using ionosonde measurements and the bidirectional Long Short-Term Memory (bi-LSTM) method. The hmF2 value in the next hour can be predicted using the data from the past five hours at the same location. The inputs chosen from a location of interest include month of the year, local time (LT), K p , F 10 . 7 and hmF2 as an independent variable vector. The independent variable vectors in the immediate past five hours are considered as an independent variable set, which is used as an input of the new Australian regional hmF2 forecast model developed for the prediction of hmF2 in the hour to come. The performance of the new model developed is evaluated by comparing with those from other popular models, such as the AMTB, Shubin, ANN and LSTM models. Results showed that: (1) the new model can substantially outperform all the other four models. (2) Compared to the LSTM model, the new model is proven to be more robust and rapidly convergent. The mew model also outperforms that of the ANN model by around 30%. (3) the minimum sample number for the bi-LSTM method (i.e., 2000) to converge is about 50% less than that is required for the LSTM method (i.e., 3000). (4) Compared to the Shubin model, the bi-LSTM method can effectively forecast the hmF2 values up to 5 h. This research is a first attempt at using the deep learning-based method for the application of the ionospheric prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.