Despite an increasing number of approved therapies, multiple myeloma (MM) remains an incurable disease and only a small number of patients achieve prolonged disease control. Some genes have been linked with response to commonly used anti-MM compounds, including immunomodulators (IMiDs) and proteasome inhibitors (PIs). In this manuscript, we demonstrate an increased incidence of acquired proteasomal subunit mutations in relapsed MM compared to newly diagnosed disease, underpinning a potential role of point mutations in the clonal evolution of MM. Furthermore, we are first to present and functionally characterize four somatic PSMB5 mutations from primary MM cells identified in a patient under prolonged proteasome inhibition, with three of them affecting the PI-binding pocket S1. We confirm resistance induction through missense mutations not only to Bortezomib, but also, in variable extent, to the next-generation PIs Carfilzomib and Ixazomib. In addition, a negative impact on the proteasome activity is assessed, providing a potential explanation for later therapy-induced eradication of the affected tumor subclones in this patient.
Long Non-Coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides in length. Several lncRNAs are involved in cell proliferation and are deregulated in several human tumors. Few lncRNAs have been described to play a role in Acute Lymphoblastic Leukemia (ALL). In this study, we carried out a genome wide lncRNA expression profiling in ALL samples and peripheral blood samples obtained from healthy donors. We detected 43 lncRNAs that were aberrantly expressed in ALL. Interestingly, among them, linc-PINT showed a significant downregulation in T and B-ALL. Re-expression of linc-PINT in ALL cells induced inhibition of leukemic cell growth that was associated with apoptosis induction and cell cycle arrest in G2/M phase. linc-PINT induced the transcription of HMOX1 which reduced the viability of ALL cells. Intriguingly, we observed that treatment with anti-tumoral epigenetic drugs like LBH-589 (Panobinostat) and Curcumin induced the expression of linc-PINT and HMOX1 in ALL. These results indicate that the downregulation of linc-PINT plays a relevant role in the pathogenesis of ALL, and linc-PINT re-expression may be one of the mechanisms exerted by epigenetic drugs to reduce cell proliferation in ALL.
Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides in length. LncRNAs are as diverse as mRNAs and they normally share the same biosynthetic machinery based on RNA polymerase II, splicing and polyadenylation. However, lncRNAs have low coding potential. Compared to mRNAs, lncRNAs are preferentially nuclear, more tissue specific and expressed at lower levels. Most of the lncRNAs described to date modulate the expression of specific genes by guiding chromatin remodelling factors; inducing chromosomal loopings; affecting transcription, splicing, translation or mRNA stability; or serving as scaffolds for the organization of cellular structures. They can function in cis, cotranscriptionally, or in trans, acting as decoys, scaffolds or guides. These functions seem essential to allow cell differentiation and growth. In fact, many lncRNAs have been shown to exert oncogenic or tumor suppressor properties in several cancers including haematological malignancies. In this review, we summarize what is known about lncRNAs, the mechanisms for their regulation in cancer and their role in leukemogenesis, lymphomagenesis and hematopoiesis. Furthermore, we discuss the potential of lncRNAs in diagnosis, prognosis and therapy in cancer, with special attention to haematological malignancies.
Combined MEK-BRAF inhibition is a well-established treatment strategy in BRAF-mutated cancer, most prominently in malignant melanoma with durable responses being achieved through this targeted therapy. However, a subset of patients face primary unresponsiveness despite presence of the activating mutation at position V600E, and others acquire resistance under treatment. Underlying resistance mechanisms are largely unknown, and diagnostic tests to predict tumor response to BRAF-MEK inhibitor treatment are unavailable.Multiple myeloma represents the second most common hematologic malignancy, and point mutations in BRAF are detectable in about 10% of patients. Targeted inhibition has been successfully applied, with mixed responses observed in a substantial subset of patients mirroring the widespread spatial heterogeneity in this genomically complex disease. Central nervous system (CNS) involvement is an extremely rare, extramedullary form of multiple myeloma that can be diagnosed in less than 1% of patients. It is considered an ultimate high-risk feature, associated with unfavorable cytogenetics, and, even with intense treatment applied, survival is short, reaching less than 12 months in most cases. Here we not only describe the first patient with an extramedullary CNS relapse responding to targeted dabrafenib and trametinib treatment, we furthermore provide evidence that a point mutation within the capicua transcriptional repressor (CIC) gene mediated the acquired resistance in this patient. The Oncologist 2020;25:112-118 KEY POINTS• BRAF mutations constitute an attractive druggable target in multiple myeloma. This is the first genomic dissection of the central nervous system involvement in a multiple myeloma patient harboring a druggable BRAF V600E mutation. Deep genomic characterization of the extramedullary lesion prompted a personalized therapeutic approach. • Acquisition of CIC mutation confers a mechanism of BRAF-MEK inhibitor drug resistance in multiple myeloma.• The in silico interrogation of the CoMMpass clinical study revealed 10 patients with somatic mutations of CIC and its downregulation at gene expression level in multiple myeloma. • CIC gene silencing decreases the sensitivity of multiple myeloma cells to BRAF-MEK inhibition in vitro. The correlation between CIC downregulation and ETV4/5 nuclear factor expression in multiple myeloma BRAF-mutant cells is shown for the first time. • CIC mutation, its downregulation, and the related downstream effect on MMP24 support disseminative potential providing new clues in the extramedullary biology definition. PATIENT HISTORYAn 81-year-old patient with κ light chain multiple myeloma (MM) was referred to our center after having a seizure and increasing M-proteins. MM had been diagnosed 2 years before and the patient had undergone nine cycles of bortezomibbased combination therapy (VMP) resulting in an initial good disease control. Magnetic resonance imaging of the brain and Correspondence: K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.