We isolated two mutants from the yeast Saccharomyces cerevisiae, cim3-1 and cim5-1, that arrest cell division in G2/metaphase at 37 degrees C. CIM3 (identical to SUG1; ref. 1) and CIM5 are similar to each other and are members of a family of putative ATPases that have been proposed to be 26S protease subunits. We show here that CIM5 is the functional yeast homologue of the human MSS1 protein and that homologues of CIM3 and CIM5 are present in a highly purified preparation of the Drosophila 26S protease. The short-lived ubiquitin-proline-beta-galactosidase fusion protein is stabilized in cim mutants, but Leu-beta-galactosidase is not. The CLB2 and CLB3 cyclins also accumulate in the cim mutants. Thus the 26S protease is required in vivo for the degradation of ubiquitinated substrates and for anaphase chromosome separation.
The hemocytes, the blood cells of Drosophila, participate in the humoral and cellular immune defense reactions against microbes and parasites [1-8]. The plasmatocytes, one class of hemocytes, are phagocytically active and play an important role in immunity and development by removing microorganisms as well as apoptotic cells. On the surface of circulating and sessile plasmatocytes, we have now identified a protein, Nimrod C1 (NimC1), which is involved in the phagocytosis of bacteria. Suppression of NimC1 expression in plasmatocytes inhibited the phagocytosis of Staphylococcus aureus. Conversely, overexpression of NimC1 in S2 cells stimulated the phagocytosis of both S. aureus and Escherichia coli. NimC1 is a 90-100 kDa single-pass transmembrane protein with ten characteristic EGF-like repeats (NIM repeats). The nimC1 gene is part of a cluster of ten related nimrod genes at 34E on chromosome 2, and similar clusters of nimrod-like genes are conserved in other insects such as Anopheles and Apis. The Nimrod proteins are related to other putative phagocytosis receptors such as Eater and Draper from D. melanogaster and CED-1 from C. elegans. Together, they form a superfamily that also includes proteins that are encoded in the human genome.
We have isolated a novel Drosophila (d) gene coding for two distinct proteins via alternative splicing: a homologue of the yeast adaptor protein ADA2, dADA2a, and a subunit of RNA polymerase II (Pol II), dRPB4. Moreover, we have identified another gene in the Drosophila genome encoding a second ADA2 homologue (dADA2b). The two dADA2 homologues, as well as many putative ADA2 homologues from different species, all contain, in addition to the ZZ and SANT domains, several evolutionarily conserved domains. The dada2a/rpb4 and dada2b genes are differentially expressed at various stages of Drosophila development. Both dADA2a and dADA2b interacted with the GCN5 histone acetyltransferase (HAT) in a yeast two-hybrid assay, and dADA2b, but not dADA2a, also interacted with Drosophila ADA3. Both dADA2s further potentiate transcriptional activation in insect and mammalian cells. Antibodies raised either against dADA2a or dADA2b both immunoprecipitated GCN5 as well as several Drosophila TATA binding protein-associated factors (TAFs). Moreover, following glycerol gradient sedimentation or chromatographic purification combined with gel filtration of Drosophila nuclear extracts, dADA2a and dGCN5 were detected in fractions with an apparent molecular mass of about 0.8 MDa whereas dADA2b was found in fractions corresponding to masses of at least 2 MDa, together with GCN5 and several Drosophila TAFs. Furthermore, in vivo the two dADA2 proteins showed different localizations on polytene X chromosomes. These results, taken together, suggest that the two Drosophila ADA2 homologues are present in distinct GCN5-containing HAT complexes.Transcription in eukaryotes is a tightly regulated, multistep process. General transcription factors, gene specific transcriptional activators, and several different cofactors are necessary to access specific loci in the context of eukaryotic chromatin to allow precise initiation of RNA polymerase II (Pol II) transcription. One of the most appealing questions in eukaryotic transcription is how activators transmit their signals to the general transcription machinery to stimulate transcription.Posttranslational modifications of nucleosomal histones have been correlated with the function of chromatin in transcription activation or repression (18, 34). One of the most extensively studied modifications is the acetylation of the highly conserved amino-terminal histone tails. The steady-state level of acetylation of histone proteins is accomplished by the action of histone acetyltransferases (HATs) and histone deacetylases (9, 37). Acetylation affects higher-order folding of chromatin fibers and histone-nonhistone protein interactions (31, 32). Thus, it can increase the affinity of transcription factors for nucleosomal DNA (40,61).A large number of recent studies have provided a direct molecular link between histone acetylation and transcriptional activation (reviewed in references 9 and 30). In these reports, it has been shown that several previously identified coactivators and adaptors of transcription possess i...
Recognition of polyubiquitylated substrates by the proteasome is a highly regulated process that requires polyubiquitin receptors. We show here that the concentrations of the proteasomal and extraproteasomal polyubiquitin receptors change in a developmentally regulated fashion. The stoichiometry of the proteasomal p54/Rpn10 polyubiquitin receptor subunit, relative to that of other regulatory particle (RP) subunits falls suddenly at the end of embryogenesis, remains low throughout the larval stages, starts to increase again in the late third instar larvae and remains high in the pupae, adults and embryos. A similar developmentally regulated fluctuation was observed in the concentrations of the Rad23 and Dsk2 extraproteasomal polyubiquitin receptors. Depletion of the polyubiquitin receptors at the end of embryogenesis is due to the emergence of a developmentally regulated selective proteolytic activity. To follow the fate of subunit p54/Rpn10 in vivo, transgenic Drosophila melanogaster lines encoding the N-terminal half (NTH), the C-terminal half (CTH) or the full-length p54/Rpn10 subunit were established in the inducible Gal4-UAS system. The daughterless-Gal4-driven whole-body expression of the full-length subunit or its NTH did not produce any detectable phenotypic changes, and the transgenic products were incorporated into the 26S proteasome. The transgene-encoded CTH was not incorporated into the 26S proteasome, caused third instar larval lethality and was found to be multi-ubiquitylated. This modification, however, did not appear to be a degradation signal because the half-life of the CTH was over 48 hours. Accumulation of the CTH disturbed the developmentally regulated changes in subunit composition of the RP and the emergence of the selective proteolytic activity responsible for the depletion of the polyubiquitin receptors. Build-up of subunit p54/Rpn10 in the RP had already started in 84-hour-old larvae and reached the full complement characteristic of the non-larval developmental stages at the middle of the third instar larval stage, just before these larvae perished. Similar shifts were observed in the concentrations of the Rad23 and Dsk2 polyubiquitin receptors. The postsynthetic modification of CTH might be essential for this developmental regulation, or it might regulate an essential extraproteasomal function(s) of subunit p54/Rpn10 that is disturbed by the expression of an excess of CTH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.