Small domain estimation covers a set of statistical methods for estimating quantities in domains not previously considered by the sample design. In such cases, the use of a model-based approach that relates sample estimates to auxiliary variables is indicated. In this paper, we propose and evaluate skew normal small area time models for the Brazilian Annual Service Sector Survey (BASSS), carried out by the Brazilian Institute of Geography and Statistics (IBGE). The BASSS sampling plan cannot produce estimates with acceptable precision for service activities in the North, Northeast and Midwest regions of the country. Therefore, the use of small area estimation models may provide acceptable precise estimates, especially if they take into account temporal dynamics and sector similarity. Besides, skew normal models can handle business data with asymmetric distribution and the presence of outliers. We propose models with domain and time random effects on the intercept and slope. The results, based on 10-year survey data (2007-2016), show substantial improvement in the precision of the estimates, albeit with presence of some bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.