All adaptive organisms face the fundamental tradeoff between pursuing a known reward (exploitation) and sampling lesser-known options in search of something better (exploration). Theory suggests at least two strategies for solving this dilemma: a directed strategy in which choices are explicitly biased toward information seeking, and a random strategy in which decision noise leads to exploration by chance. In this work we investigated the extent to which humans use these two strategies. In our “Horizon task,” participants made explore– exploit decisions in two contexts that differed in the number of choices that they would make in the future (the time horizon). Participants were allowed to make either a single choice in each game (horizon 1), or 6 sequential choices (horizon 6), giving them more opportunity to explore. By modeling the behavior in these two conditions, we were able to measure exploration-related changes in decision making and quantify the contributions of the two strategies to behavior. We found that participants were more information seeking and had higher decision noise with the longer horizon, suggesting that humans use both strategies to solve the exploration– exploitation dilemma. We thus conclude that both information seeking and choice variability can be controlled and put to use in the service of exploration.
In recent years, ideas from the computational field of reinforcement learning have revolutionized the study of learning in the brain, famously providing new, precise theories of how dopamine affects learning in the basal ganglia. However, reinforcement learning algorithms are notorious for not scaling well to multidimensional environments, as is required for real-world learning. We hypothesized that the brain naturally reduces the dimensionality of real-world problems to only those dimensions that are relevant to predicting reward, and conducted an experiment to assess by what algorithms and with what neural mechanisms this "representation learning" process is realized in humans. Our results suggest that a bilateral attentional control network comprising the intraparietal sulcus, precuneus, and dorsolateral prefrontal cortex is involved in selecting what dimensions are relevant to the task at hand, effectively updating the task representation through trial and error. In this way, cortical attention mechanisms interact with learning in the basal ganglia to solve the "curse of dimensionality" in reinforcement learning.
The development of shared memories, beliefs, and norms is a fundamental characteristic of human communities. These emergent outcomes are thought to occur owing to a dynamic system of information sharing and memory updating, which fundamentally depends on communication. Here we report results on the formation of collective memories in laboratory-created communities. We manipulated conversational network structure in a series of real-time, computer-mediated interactions in fourteen 10-member communities. The results show that mnemonic convergence, measured as the degree of overlap among community members' memories, is influenced by both individual-level information-processing phenomena and by the conversational social network structure created during conversational recall. By studying laboratory-created social networks, we show how large-scale social phenomena (i.e., collective memory) can emerge out of microlevel local dynamics (i.e., mnemonic reinforcement and suppression effects). The social-interactionist approach proposed herein points to optimal strategies for spreading information in social networks and provides a framework for measuring and forging collective memories in communities of individuals.mnemonic reinforcement effect | socially-shared retrieval-induced forgetting | social networks | collective memories | emergent phenomena
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.