We report the synthesis and characterization of "bistetracene", an unconventional, linearly extended conjugated core with eight fused rings. The annellation mode of the system allows for increased stability of the conjugated system relative to linear analogues due to the increased number of Clar aromatic sextets. By attaching the appropriate solubilizing substituents, efficient molecular packing with large transfer integrals can be obtained. The electronic structure calculations suggest these large polycyclic aromatic hydrocarbons (PAHs) exhibit excellent intrinsic charge transport properties. Charge carrier mobilities as large as 6.1 cm(2) V(-1) s(-1) and current on/off ratios of 10(7) were determined experimentally for one of our compounds. Our study provides valuable insight into the design of unconventional semiconductor compounds based on higher PAHs for use in high-performance devices.
The Diels-Alder (DA) reactions of pentacene (PT), 6,13-bis(2-trimethylsilylethynyl)pentacene (TMS-PT), bistetracene (BT), and 8,17-bis(2-trimethylsilylethynyl)bistetracene (TMS-BT) with the [6,6] double bond of [60]fullerene have been investigated by density functional theory calculations. Reaction barriers and free energies have been obtained to assess the effects of frameworks and substituent groups on the DA reactivity and product stability. Calculations indicate that TMS-BT is about 5 orders of magnitude less reactive than TMS-PT in the reactions with [60]fullerene. This accounts for the observed much higher stability of TIPS-BT than TIPS-PT when mixed with PCBM. Surprisingly, calculations predict that the bulky silylethynyl substituents of TMS-PT and TMS-BT have only a small influence on reaction barriers. However, the silylethynyl substituents significantly destabilize the corresponding products due to steric repulsions in the adducts. This is confirmed by experimental results here. Architectures of the polycyclic aromatic hydrocarbons (PAHs) play a crucial role in determining both the DA barrier and the adduct stability. The reactivities of different sites in various PAHs are related to the loss of aromaticity, which can be predicted using the simple Hückel molecular orbital localization energy calculations.
Abstract:The investigation of mineralization and demineralization processes is important for the understanding of many phenomena in daily life. Many crystalline materials are exposed to decay processes, resulting in lesions, cracks, and cavities. Historical artifacts, for example, often composed of calcium carbonate (CaCO 3 ), are damaged by exposure to acid rain or temperature cycles. Another example for lesions in a crystalline material is dental caries, which lead to the loss of dental hard tissue, mainly composed of hydroxyapatite (HAp). The filling of such cavities and lesions, to avoid further mineral loss and enable or support the remineralization, is a major effort in both areas. Nevertheless, the investigation of the filling process of these materials into the cavities is difficult due to the non-transparency and crystallinity of the concerned materials. In order to address this problem, we present a transparent, inexpensive, and reusable test system for the investigation of infiltration and crystallization processes in situ, being able to deliver datasets that could potentially be used for quantitative evaluation of the infiltration process. This was achieved using a UV-lithography-based micro-comb test system (MCTS), combined with self-assembled monolayers (SAMs) to mimic the surface tension/wettability of different materials, like marble, sandstone, or human enamel. Moreover, the potential of this test system is illustrated by infiltration of a CaCO 3 crystallization solution and a hydroxyapatite precursor (HApP) into the MCTS.
Nanolimes have been commercially available for over a decade as a remineralization agent for natural stone to combat deterioration. While they have been applied successfully and studied extensively, their penetration abilities in different materials have not yet been readily quantifiable in situ and in real time. Using two transparent pore-imitating test systems (acrylic glass (PMMA) and polydimethylsiloxane (PDMS)) and light microscopy, the penetration coefficients (PCs) of two nanolimes (CaLoSiL (CLS) and Nanorestore Plus (NRP)), as well as their solvents, were determined experimentally in square channels of about 100 µm diameter. Their PCs and those for a previously published glass–resin-based test system were also predicted based on measurable material parameters or literature values using the Lucas–Washburn equation. Additionally, a liquid mineral precursor (LMP) of calcium carbonate based on complex coacervation (CC) was investigated as an alternative to the solid particle dispersions of nanolime. In general, the dispersions behaved like their pure solvents. Overall, trends could be reasonably well predicted with both literature and experimentally determined properties using the Lucas–Washburn equation. In absolute terms, the prediction of observed infiltration behavior was satisfactory for alcohols and nanolimes but deviated substantially for water and the aqueous LMP. The commercially available PMMA chips and newly designed PDMS devices were mostly superior to the previously published glass–resin-based test system, except for the long-term monitoring of material deposition. Lastly, the transfer of results from these investigated systems to a different, nontransparent mineral, calcite, yielded similar PC values independently of the original data when used as the basis for the conversion (all PC types and all material/liquid combinations except aqueous solutions in PDMS devices). This knowledge can be used to improve the targeted design of tailor-made remineralization treatments for different application cases by guiding solvent choice, and to reduce destructive sampling by providing a micromodel for pretesting, if transferability to real stone samples proves demonstrable in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.