Empirical models based on sampled data can be useful for complex chemical engineering processes such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. In this case, the goal is to predict the monomer conversion, the numerical average molecular weight and the gravimetrical average molecular weight. This process is characterized by non-linear gel and glass effects caused by the sharp increase in the viscosity as the reaction progresses. To increase accuracy, one needs more samples in the areas with higher variation and this is achieved with adaptive sampling. An extensive comparative study is performed between three regression algorithms for this chemical process. The first two are based on the concept of a large margin, typical of support vector machines, but used for regression, in conjunction with an instance-based method. The learning of problem-specific distance metrics can be performed by means of either an evolutionary algorithm or an approximate differential approach. Having a set of prototypes with different distance metrics is especially useful when a large number of instances should be handled. Another original regression method is based on the idea of denoising autoencoders, i.e., the prototype weights and positions are set in such a way as to minimize the mean square error on a slightly corrupted version of the training set, where the instances inputs are slightly changed with a small random quantity. Several combinations of parameters and ways of splitting the data into training and testing sets are used in order to assess the performance of the algorithms in different scenarios.
This study is based on the consideration that the patients with rheumatoid arthritis and ankylosing spondylitis undergoing biological therapy have a higher risk of developing tuberculosis. The QuantiFERON-TB Gold test result was the output of the models and a series of features related to the patients and their treatments were chosen as inputs. A distribution of patients by gender and biological therapy, followed at the time of inclusion in the study, and at the end of the study, is made for both rheumatoid arthritis and ankylosing spondylitis. A series of classification algorithms (random forest, nearest neighbor, k-nearest neighbors, C4.5 decision trees, non-nested generalized exemplars, and support vector machines) and attribute selection algorithms (ReliefF, InfoGain, and correlation-based feature selection) were successfully applied. Useful information was obtained regarding the influence of biological and classical treatments on tuberculosis risk, and most of them agreed with medical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.