Recognition of tree species and geospatial information on tree species composition is essential for forest management. In this study, tree species recognition was examined using hyperspectral imagery from visible to near-infrared (VNIR) and shortwave infrared (SWIR) camera sensors in combination with a 3D photogrammetric canopy surface model based on RGB camera stereo-imagery. An arboretum with a diverse selection of 26 tree species from 14 genera was used as a test area. Aerial hyperspectral imagery and high spatial resolution photogrammetric color imagery were acquired from the test area using unmanned aerial vehicle (UAV) borne sensors. Hyperspectral imagery was processed to calibrated reflectance mosaics and was tested along with the mosaics based on original image digital number values (DN). Two alternative classifiers, a k nearest neighbor method (k-nn), combined with a genetic algorithm and a random forest method, were tested for predicting the tree species and genus, as well as for selecting an optimal set of remote sensing features for this task. The combination of VNIR, SWIR, and 3D features performed better than any of the data sets individually. Furthermore, the calibrated reflectance values performed better compared to uncorrected DN values. These trends were similar with both tested classifiers. Of the classifiers, the k-nn combined with the genetic algorithm provided consistently better results than the random forest algorithm. The best result was thus achieved using calibrated reflectance features from VNIR and SWIR imagery together with 3D point cloud features; the proportion of correctly-classified trees was 0.823 for tree species and 0.869 for tree genus.
Hakala T., Viljanen N. (2017). Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables. Silva Fennica vol. 51 no. 5 article id 7721. 21 p. https://doi.org/10.14214/sf.7721 Highlights• Hyperspectral imagery and photogrammetric 3D point cloud based on RGB imagery were acquired under weather conditions changing from cloudy to sunny.• Calibration of hyperspectral imagery was required for compensating the effect of varying weather conditions. • The combination of hyperspectral imagery and photogrammetric point cloud data resulted in accurate forest estimates, especially for volumes per tree species. AbstractRemote sensing using unmanned aerial vehicle (UAV) -borne sensors is currently a highly interesting approach for the estimation of forest characteristics. 3D remote sensing data from airborne laser scanning or digital stereo photogrammetry enable highly accurate estimation of forest variables related to the volume of growing stock and dimension of the trees, whereas recognition of tree species dominance and proportion of different tree species has been a major complication in remote sensing-based estimation of stand variables. In this study the use of UAV-borne hyperspectral imagery was examined in combination with a high-resolution photogrammetric canopy height model in estimating forest variables of 298 sample plots. Data were captured from eleven separate test sites under weather conditions varying from sunny to cloudy and partially cloudy. Both calibrated hyperspectral reflectance images and uncalibrated imagery were tested in combination with a canopy height model based on RGB camera imagery using the k-nearest neighbour estimation method. The results indicate that this data combination allows accurate estimation of stand volume, mean height and diameter: the best relative RMSE values for those variables were 22.7%, 7.4% and 14.7%, respectively. In estimating volume and dimension-related variables, the use of a calibrated image mosaic did not bring significant improvement in the results. In estimating the volumes of individual tree species, the use of calibrated hyperspectral imagery generally brought marked improvement in the estimation accuracy; the best relative RMSE values for the volumes for pine, spruce, larch and broadleaved trees were 34.5%, 57.2%, 45.7% and 42.0%, respectively.
Highlights• 3D aerial imaging provides a feasible method for estimating forest variables in the form of thematic maps in large area inventories.• Photogrammetric 3D data based on aerial imagery that was originally acquired for orthomosaic production was tested in estimating stand variables.• Photogrammetric 3D data highly improved the accuracy of forest estimates compared to traditional 2D remote sensing imagery. AbstractOptical 2D remote sensing techniques such as aerial photographing and satellite imaging have been used in forest inventory for a long time. During the last 15 years, airborne laser scanning (ALS) has been adopted in many countries for the estimation of forest attributes at stand and sub-stand levels. Compared to optical remote sensing data sources, ALS data are particularly well-suited for the estimation of forest attributes related to the physical dimensions of trees due to its 3D information. Similar to ALS, it is possible to derive a 3D forest canopy model based on aerial imagery using digital aerial photogrammetry. In this study, we compared the accuracy and spatial characteristics of 2D satellite and aerial imagery as well as 3D ALS and photogrammetric remote sensing data in the estimation of forest inventory variables using k-NN imputation and 2469 National Forest Inventory (NFI) sample plots in a study area covering approximately 5800 km². Both 2D data were very close to each other in terms of accuracy, as were both the 3D materials.On the other hand, the difference between the 2D and 3D materials was very clear. The 3D data produce a map where the hotspots of volume, for instance, are much clearer than with 2D remote sensing imagery. The spatial correlation in the map produced with 2D data shows a lower shortrange correlation, but the correlations approach the same level after 200 meters. The difference may be of importance, for instance, when analyzing the efficiency of different sampling designs and when estimating harvesting potential.
Pölönen I., Sarkeala J., Viitala R. (2015). Unmanned aerial system imagery and photogrammetric canopy height data in area-based estimation of forest variables. Silva Fennica vol. 49 no. 5 article id 1348. 19 p. Highlights• Orthoimage mosaic and 3D canopy height model were derived from UAV-borne colourinfrared digital camera imagery and ALS-based terrain model. • Features extracted from orthomosaic and canopy height data were used for estimating forest variables.• The accuracy of forest estimates was similar to that of the combination of ALS and digital aerial imagery. AbstractIn this paper we examine the feasibility of data from unmanned aerial vehicle (UAV)-borne aerial imagery in stand-level forest inventory. As airborne sensor platforms, UAVs offer advantages cost and flexibility over traditional manned aircraft in forest remote sensing applications in small areas, but they lack range and endurance in larger areas. On the other hand, advances in the processing of digital stereo photography make it possible to produce three-dimensional (3D) forest canopy data on the basis of images acquired using simple lightweight digital camera sensors. In this study, an aerial image orthomosaic and 3D photogrammetric canopy height data were derived from the images acquired by a UAV-borne camera sensor. Laser-based digital terrain model was applied for estimating ground elevation. Features extracted from orthoimages and 3D canopy height data were used to estimate forest variables of sample plots. K-nearest neighbor method was used in the estimation, and a genetic algorithm was applied for selecting an appropriate set of features for the estimation task. Among the selected features, 3D canopy features were given the greatest weight in the estimation supplemented by textural image features. Spectral aerial photograph features were given very low weight in the selected feature set. The accuracy of the forest estimates based on a combination of photogrammetric 3D data and orthoimagery from UAV-borne aerial imaging was at a similar level to those based on airborne laser scanning data and aerial imagery acquired using purpose-built aerial camera from the same study area.
& Key message Volume predictions of sample trees are basic inputs for essential National Forest Inventory (NFI) estimates. The predicted volumes are rarely comparable among European NFIs because of country-specific dbh-thresholds and differences regarding the inclusion of the tree parts stump, stem top, and branches. Twenty-one European NFIs implemented harmonisation measures to provide consistent stem volume predictions for comparable forest resource estimates. & Context The harmonisation of forest information has become increasingly important. International programs and interest groups from the wood industry, energy, and environmental sectors require comparable information. European NFIs as primary source of forest information are well-placed to support policies and decision-making processes with harmonised estimates. & Aims The main objectives were to present the implementation of stem volume harmonisation by European NFIs, to obtain comparable growing stocks according to five reference definitions, and to compare the different results. & Methods The applied harmonisation approach identifies the deviations between country-level and common reference definitions. The deviations are minimised through country-specific bridging functions. Growing stocks were calculated from the unharmonised, and harmonised stem volume estimates and comparisons were made. This article is part of the topical collection on Forest information for bioeconomy outlooks at European level
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.