We investigate polynomial decay of classical solutions of linear evolution equations. For bounded strongly continuous semigroups on a Banach space this property is closely related to polynomial growth estimates of the resolvent of the generator. For systems of commuting normal operators polynomial decay is characterized in terms of the location of the generator spectrum. The results are applied to systems of coupled wave-type equations.
We prove the equivalence of the well-posedness of a partial differential equation with delay and an associated abstract Cauchy problem. This is used to derive sufficient conditions for well-posedness, exponential stability and norm continuity of the solutions. Applications to a reaction-diffusion equation with delay are given.
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Spectral problems for operator matricesBátkai, A.; Binding, P.; Dijksma, A.; Hryniv, R.; Langer, H. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Dedicated to the memory of Professor F. V. Atkinson with respect and admirationWe study spectral properties of 2 × 2 block operator matrices whose entries are unbounded operators between Banach spaces and with domains consisting of vectors satisfying certain relations between their components. We investigate closability in the product space, essential spectra and generation of holomorphic semigroups. Application is given to several models governed by ordinary and partial differential equations, for example containing delays, floating singularities or eigenvalue dependent boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.