This paper presents a dataset recorded on-board a camera-equipped micro aerial vehicle flying within the urban streets of Zurich, Switzerland, at low altitudes (i.e. 5-15 m above the ground). The 2 km dataset consists of time synchronized aerial high-resolution images, global position system and inertial measurement unit sensor data, ground-level street view images, and ground truth data. The dataset is ideal to evaluate and benchmark appearance-based localization, monocular visual odometry, simultaneous localization and mapping, and online three-dimensional reconstruction algorithms for micro aerial vehicles in urban environments.
Abstract-We tackle the problem of globally localizing a camera-equipped micro aerial vehicle flying within urban environments for which a Google Street View image database exists. To avoid the caveats of current image-search algorithms in case of severe viewpoint changes between the query and the database images, we propose to generate virtual views of the scene, which exploit the air-ground geometry of the system. To limit the computational complexity of the algorithm, we rely on a histogram-voting scheme to select the best putative image correspondences. The proposed approach is tested on a 2km image dataset captured with a small quadroctopter flying in the streets of Zurich. The success of our approach shows that our new air-ground matching algorithm can robustly handle extreme changes in viewpoint, illumination, perceptual aliasing, and over-season variations, thus, outperforming conventional visual place-recognition approaches. MULTIMEDIA MATERIALPlease note that this paper is accompanied by a video demonstration available on our webpage along with the dataset used in this work: rpg.ifi.uzh.ch
In this paper, we address the problem of globally localizing and tracking the pose of a cameraequipped micro aerial vehicle (MAV) flying in urban streets at low altitudes without GPS. An image-based global positioning system is introduced to localize the MAV with respect to the surrounding buildings. We propose a novel air-ground image-matching algorithm to search the airborne image of the MAV within a ground-level, geotagged image database. Based on the detected matching image features, we infer the global position of the MAV by back-projecting the corresponding image points onto a cadastral threedimensional city model. Furthermore, we describe an algorithm to track the position of the flying vehicle over several frames and to correct the accumulated drift of the visual odometry whenever a good match is detected between the airborne and the ground-level images. The proposed approach is tested on a 2 km trajectory with a small quadrocopter flying in the streets of Zurich. Our vision-based global localization can robustly handle extreme changes in viewpoint, illumination, perceptual aliasing, and over-season variations, thus outperforming conventional visual place-recognition approaches. The dataset is made publicly available to the research community. To the best of our knowledge, this is the first work that studies and demonstrates global localization and position tracking of a drone in urban streets with a single onboard camera. Abstract-In this paper, we address the problem of globally localizing and tracking the pose of a camera-equipped Micro Aerial Vehicle (MAV) flying in urban streets at low altitudes without GPS. An image-based global positioning system is introduced to localize the MAV with respect to the surrounding buildings. We propose a novel air-ground image matching algorithm to search the airborne image of the MAV within a ground-level, geotagged image database. Based on the detected matching image features, we infer the global position of the MAV by back-projecting the corresponding image points onto a cadastral 3D city model. Furthermore, we describe an algorithm to track the position of the flying vehicle over several frames and to correct the accumulated drift of the visual odometry whenever a good match is detected between the airborne and the ground-level images. The proposed approach is tested on a 2km trajectory with a small quadroctopter flying in the streets of Zurich. Our vision-based global localization can robustly handle extreme changes in viewpoint, illumination, perceptual aliasing, and over-season variations, thus, outperforming conventional visual place-recognition approaches. The dataset is made publicly available to the research community. To the best of our knowledge, this is the first work that studies and demonstrates global localization and position tracking of a drone in urban streets with a single onboard camera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.