Nanocrystalline (anatase), mesoporous TiO2 thin films were functionalized with [Ru(bpy)2(deebq)](PF6)2, [Ru(bq)2(deeb)](PF6)2, [Ru(deebq)2(bpy)](PF6)2, [Ru(bpy)(deebq)(NCS)2], or [Os(bpy)2(deebq)](PF6)2, where bpy is 2,2'-bipyridine, bq is 2,2'-biquinoline, and deeb and deebq are 4,4'-diethylester derivatives. These compounds bind to the nanocrystalline TiO2 films in their carboxylate forms with limiting surface coverages of 8 (+/- 2) x 10(-8) mol/cm2. Electrochemical measurements show that the first reduction of these compounds (-0.70 V vs SCE) occurs prior to TiO2 reduction. Steady state illumination in the presence of the sacrificial electron donor triethylamine leads to the appearance of the reduced sensitizer. The thermally equilibrated metal-to-ligand charge-transfer excited state and the reduced form of these compounds do not inject electrons into TiO2. Nanosecond transient absorption measurements demonstrate the formation of an extremely long-lived charge separated state based on equal concentrations of the reduced and oxidized compounds. The results are consistent with a mechanism of ultrafast excited-state injection into TiO2 followed by interfacial electron transfer to a ground-state compound. The quantum yield for this process was found to increase with excitation energy, a behavior attributed to stronger overlap between the excited sensitizer and the semiconductor acceptor states. For example, the quantum yields for [Os(bpy)2(dcbq)]/TiO2 were phi(417 nm) = 0.18 +/- 0.02, phi(532.5 nm) = 0.08 +/- 0.02, and phi(683 nm) = 0.05 +/- 0.01. Electron transfer to yield ground-state products occurs by lateral intermolecular charge transfer. The driving force for charge recombination was in excess of that stored in the photoluminescent excited state. Chronoabsorption measurements indicate that ligand-based intermolecular electron transfer was an order of magnitude faster than metal-centered intermolecular hole transfer. Charge recombination was quantified with the Kohlrausch-Williams-Watts model.
The metal-to-ligand charge-transfer (MLCT) excited states of Ru(bpy)(2)(deeb)(PF(6))(2), where bpy is 2,2-bipyridine and deeb is 4,4'-(CO(2)CH(2)CH(3))(2)-2,2'-bipyridine, in dichloromethane were found to be efficiently quenched by iodide at room temperature. The ionic strength dependence of the UV-visible absorption spectra gave evidence for ion pairing. Iodide was found to quench the excited states by static and dynamic mechanisms. Stern-Volmer and Benesi-Hildebrand analysis of the spectral data provided a self-consistent estimate of the iodide-Ru(bpy)(2)(deeb)(2+) adduct in dichloromethane, K = 59 700 M(-1). Transient absorption studies clearly demonstrated an electron-transfer quenching mechanism with transient formation of I(2)(*)(-) in high yield, phi = 0.25 for 355 or 532 nm excitation. For Ru(bpy)(2)(deeb)(PF(6))(2) in acetonitrile, similar behavior could be observed at higher iodide concentrations than that required in dichloromethane. The parent Ru(bpy)(3)(2+) compound also ion pairs with iodide in CH(2)Cl(2), and light excitation gave a higher I(2)(*)(-) yield, phi = 0.50. X-ray crystallographic, IR, and Raman data gave evidence for interactions between iodide and the coordinated deeb ligand in the solid state.
The performance of five tetrapyrrole molecules as sensitizers in regenerative solar cells was evaluated. The tetrapyrroles form two sets. One set contains three meso-substituted porphyrins that differ only in the nature of their surface-binding tether: isophthalic acid, ethynylisophthalic acid, or cyanoacrylic acid. The other set includes the ethynylisophthalic acid tether attached to porphyrin, chlorin, and bacteriochlorin macrocycles, which contain zero, one, and two saturated pyrrole rings, respectively. Incident photon-to-current efficiency was measured for each sensitizer loaded onto a mesoporous TiO2 semitransparent electrode in a solar cell. The porphyrin bearing the cyanoacrylic acid tether gives the largest peak and integrated (350−900 nm) photocurrent density of the five tetrapyrrole molecules. For this sensitizer, a quasi-monochromatic power conversion efficiency of 21% was obtained at the Soret maximum (450 nm), along with a fill factor of 0.69. To elucidate the molecular origins of the effects of tether and macrocycle reduction on photocurrent production, the measured redox potentials and optical absorption spectra were analyzed in terms of the characteristics (energies and electron-density distributions) of the frontier molecular orbitals obtained from density functional theory calculations. Additionally, first-principle simulations were performed for the production of photocurrent by hypothetical planar and actual mesoporous films of each sensitizer under AM 1.5 solar irradiation. Collectively, the findings give fundamental insights into the factors that govern the observed differences in photocurrent production characteristics for the five tetrapyrrole sensitizers. In addition, the results provide a framework for further tuning of the properties of these molecules and related sensitizers to enhance solar-cell performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.