Soil-borne phytopathogens can have detrimental effects on both cereal and horticultural crops resulting in serious losses worldwide. Due to their high efficiency and easy applicability, synthetic pesticides are still the primary choice in modern plant disease control systems, but stringent regulations and increasing environmental concerns make the search for sustainable alternatives more pressing than ever. In addition to the incorporation of botanicals into agricultural practices, the diversification of cropping systems with aromatic and medicinal plants is also an effective tool to control plant diseases through providing nutrients and shaping soil microbial communities. However, these techniques are not universally accepted and may negatively affect soil fertility if their application is not thoroughly controlled. Because the biocontrol potential of aromatic and medicinal plants has been extensively examined over the past decades, the present study aims to overview the recent literature concerning the biopesticide effect of secondary metabolites derived from aromatic and medicinal plants on important soil-borne plant pathogens including bacteria, fungi, and nematodes. Most of the investigated herbs belong to the family of Lamiaceae (e.g., Origanum spp., Salvia spp., Thymus spp., Mentha spp., etc.) and have been associated with potent antimicrobial activity, primarily due to their chemical constituents. The most frequently tested organisms include fungi, such as Rhizoctonia spp., Fusarium spp., and Phytophthora spp., which may be highly persistent in soil. Despite the intense research efforts dedicated to the development of plant-based pesticides, only a few species of aromatic herbs are utilized for the production of commercial formulations due to inconsistent efficiency, lack of field verification, costs, and prolonged authorization requirements. However, recycling the wastes from aromatic and medicinal plant-utilizing industries may offer an economically feasible way to improve soil health and reduce environmental burdens at the same time. Overall, this review provides comprehensive knowledge on the efficiency of aromatic herb-based plant protection techniques, and it also highlights the importance of exploiting the residues generated by aromatic plant-utilizing sectors as part of agro-industrial processes.
The primary purpose of this study was to investigate the influence of Cellulomonas flavigena and Streptomyces viridosporus, as a bacterial inoculant, on the compostability of post-extraction lavender waste. The major physicochemical, microbiological, and biological properties of the composting materials were monitored for 161 days. The technology developed was shown to improve the compostability of recalcitrant herbal residues. The use of lavender waste beneficially affected the composting process by extending the thermophilic phase, accelerating the degradation of organic matter, and elevating the viable counts of useful microorganisms; however, adverse effects were also observed, including an increased carbon-to-nitrogen ratio (19.05) and a decreased germination index (93.4%). Bacterial inoculation was found to preserve the nitrogen content (2.50%) and improve the efficiency of biodegradation. The Salmonella- and Escherichia coli-free final composting products were mature, stable, and ready for soil application. To the authors’ knowledge, no previous research has investigated the compostability of lavender waste. Likewise, this is the first study that has used strains of C. flavigena and S. viridosporus in combination to facilitate a composting process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.