Placental protein 13 (PP13) was cloned from human term placenta. As sequence analyses, alignments and computational modelling showed its conserved structural and functional homology to members of the galectin family, the protein was designated galectin-13. Similar to human eosinophil Charcot-Leyden crystal protein/galectin-10 but not other galectins, its weak lysophospholipase activity was confirmed by 31 P-NMR. In this study, recombinant PP13/ galectin-13 was expressed and specific monoclonal antibody to PP13 was developed. Endogenous lysophospholipase activity of both the purified and also the recombinant protein was verified. Sugar binding assays revealed that N-acetyl-lactosamine, mannose and N-acetyl-glucosamine residues widely expressed in human placenta had the strongest binding affinity to both the purified and recombinant PP13/galectin-13, which also effectively agglutinated erythrocytes. The protein was found to be a homodimer of 16 kDa subunits linked together by disulphide bonds, a phenomenon differing from the noncovalent dimerization of previously known prototype galectins. Furthermore, reducing agents were shown to decrease its sugar binding activity and abolish its haemagglutination. Phosphorylation sites were computed on PP13/galectin-13, and phosphorylation of the purified protein was confirmed. Using affinity chromatography, PAGE, MALDI-TOF MS and post source decay, annexin II and beta/gamma actin were identified as proteins specifically bound to PP13/galectin-13 in placenta and fetal hepatic cells. Perinuclear staining of the syncytiotrophoblasts showed its expression in these cells, while strong labelling of the syncytiotrophoblasts' brush border membrane confirmed its galectin-like externalization to the cell surface. Knowing its colocalization and specific binding to annexin II, PP13/galectin-13 was assumed to be secreted to the outer cell surface by ectocytosis, in microvesicles containing actin and annexin II. With regard to our functional and immunomorphological results, PP13/galectin-13 may have special haemostatic and immunobiological functions at the lining of the common feto-maternal blood-spaces or developmental role in the placenta.Keywords: brush border membrane; carbohydrate binding; galectin; lysophospholipase; placental protein.Placental protein 13 (PP13) is a member of the group of the so-called Ôpregnancy-related proteinsÕ [1] that might be highly expressed in placenta and some maternal/fetal tissues during pregnancy. The structural and functional characteristics of these proteins and their possible role in placental development and regulation pathways are receiving increased interest at present. PP13 was first isolated from human placenta and characterized by Bohn et al. in 1983. It was found to be comprised of two identical 16 kDa subunits held together by disulfide bonds, and to have the lowest carbohydrate content (0.6%) of any known placental proteins [2]. Later, cloning of PP13 was performed in parallel by two research groups [3,4], and its sequence was deposited separ...
The intracellular role of placental protein 17b (PP17b)/TIP47 has been controversial, because it is considered to be a protein required for mannose 6‐phosphate receptor transport from endosome to trans‐Golgi as well as a neutral lipid droplet‐associated protein. The similarity between the amino acid sequences of PP17 variants, adipophilin and perilipins, and between their gene structures indicate that PP17b as well as other alternatively spliced PP17 variants belong to the lipid storage droplet protein family, containing also some differentiation factors. Using a specific antibody, PP17b was detected in lipid droplet fractions and co‐localized with neutral lipid droplets stained by Nile red, and fluorescently labelled PP17 antibody in HeLa cells with confocal microscopy. PP17b was also detected in milk, associated to milk lipid globule membranes. Cytostatic agents induced apoptosis and PP17b synthesis in HeLa cells, which was significantly inhibited by protein kinase C (PKC) inhibitor, indicating the involvement of NF‐κB and AP‐1 transcription factors in this process, while protein kinase A (PKA) inhibitor had only a modest inhibitory effect. Cell differentiation induced by dibutyryl cyclic AMP or phorbol myristate acetate also increased PP17b synthesis, demonstrating its strong involvement in cell differentiation. PP17b synthesis was higher in M than in G0/G1 phases in control, apoptotic and differentiated cells. This data shows that PP17b is a neutral lipid droplet‐associated protein, and its expression is regulated by PKC‐ and PKA‐dependent pathways.
AlphaB-crystallin homology, heat stress induction and chaperone activity suggested that a previously encloned gene product is a novel small heat shock protein (Hsp16.2). Suppression of Hsp16.2 by siRNA sensitized cells to hydrogen peroxide or taxol induced cell-death. Over-expressing of Hsp16.2 protected cells against stress stimuli by inhibiting cytochrome c release from the mitochondria, nuclear translocation of AIF and endonuclease G, and caspase 3 activation. Recombinant Hsp16.2 protected mitochondrial membrane potential against calcium induced collapse in vitro indicating that Hsp16.2 stabilizes mitochondrial membrane systems. Hsp16.2 formed self-aggregates and bound to Hsp90. Inhibition of Hsp90 by geldanamycin diminished the cytoprotective effect of Hsp16.2 indicating that this effect was Hsp90-mediated. Hsp16.2 over-expression increased lipid rafts formation as demonstrated by increased cell surface labeling with fluorescent cholera toxin B, and increased Akt phosphorylation. The inhibition of PI-3-kinase-Akt pathway by LY-294002 or wortmannin significantly decreased the protective effect of the Hsp16.2. These data indicate that the over-expression of Hsp16.2 inhibits cell death via the stabilization of mitochondrial membrane system, activation of Hsp90, stabilization of lipid rafts and by the activation of PI-3-kinase-Akt cytoprotective pathway.
We found that heme-binding protein 2/SOUL sensitised NIH3T3 cells to cell death induced by A23187 and etoposide, but it did not affect reactive oxygen species formation. In the presence of sub-threshold calcium, recombinant SOUL provoked mitochondrial permeability transition (mPT) in vitro that was inhibited by cyclosporine A (CsA). This effect was verified in vivo by monitoring the dissipation of mitochondrial membrane potential. Flow cytometry analysis showed that SOUL promoted necrotic death in A23187 and etoposide treated cells, which effect was prevented by CsA. These data suggest that besides its hemebinding properties SOUL promotes necrotic cell death by inducing mPT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.