Dopamine (DA), as one of the major neurotransmitters in the central nervous system (CNS) and periphery, exerts its actions through five types of receptors which belong to two major subfamilies such as D1-like (i.e., D1 and D5 receptors) and D2-like (i.e., D2, D3 and D4) receptors. Dopamine D3 receptor (D3R) was cloned 30 years ago, and its distribution in the CNS and in the periphery, molecular structure, cellular signaling mechanisms have been largely explored. Involvement of D3Rs has been recognized in several CNS functions such as movement control, cognition, learning, reward, emotional regulation and social behavior. D3Rs have become a promising target of drug research and great efforts have been made to obtain high affinity ligands (selective agonists, partial agonists and antagonists) in order to elucidate D3R functions. There has been a strong drive behind the efforts to find drug-like compounds with high affinity and selectivity and various functionality for D3Rs in the hope that they would have potential treatment options in CNS diseases such as schizophrenia, drug abuse, Parkinson’s disease, depression, and restless leg syndrome. In this review, we provide an overview and update of the major aspects of research related to D3Rs: distribution in the CNS and periphery, signaling and molecular properties, the status of ligands available for D3R research (agonists, antagonists and partial agonists), behavioral functions of D3Rs, the role in neural networks, and we provide a summary on how the D3R-related drug research has been translated to human therapy.
Kv subfamily member 1.3 (Kv1.3), a member of the Shaker family of potassium channels, has been found to play diverse roles in immunity, metabolism, insulin resistance, sensory discrimination, and axonal targeting in addition to its traditional role in the stabilization of the resting potential. We demonstrate that the neurotrophin B receptor (TrkB) causes an upregulation of Kv1.3 ion channel protein expression in the absence of the preferred ligand for the receptor (brain-derived neurotrophic factor; BDNF) and oppositely downregulates levels of Kv subfamily member 1.5. Although the effect occurs in the absence of the ligand, Kv1.3 upregulation by TrkB is dependent upon the catalytic domain of the TrkB kinase as well as tyrosine (Y) residues in the N and C terminus of the Kv1.3 channel. Using pulse-chase experiments we find that TrkB alters the half-life residence of the channel by approximately 2x and allows it to sustain activity as reflected in an increased current magnitude without alteration of kinetic properties. TrkB and Kv1.3 co-immunoprecipitate from tissue preparations of the mouse olfactory bulb and olfactory cortex, and by immunocytochemical approaches, are found to be co-localized in the glomerular, mitral cell, and internal plexiform layers of the olfactory bulb. These data suggest that Kv1.3 is not only modulated by direct phosphorylation in the presence of BDNF-activated TrkB kinase, but also may be fine tuned via regulation of surface expression while in the proximity of neurotrophic factor receptors. Given the variability of TrkB expression during development, regeneration, or neuronal activation, modulation of surface expression and turnover of Kv channels could significantly impact neuronal excitability, distinct from that of tyrosine kinase phosphorylation.
The Ce 4+ -malonic/bromomalonic acid reactions play an important role in the oscillatory Belousov-Zhabotinsky reaction. In this work CO 2 evolution from these reactions was studied with a sensitive and quantitative method, by converting the CO 2 to methane and measuring it with a flame ionization detector. It was found that the stoichiometries depend on the initial conditions in batch experiments or on the mixing rate of reagents in a semibatch reactor. These findings are explained by two main reaction channels: one for recombination and another for decarboxylation. Decarboxylation itself has two separate routes, one is dominant at low while the other at high Ce 4+ concentrations. In the latter, formation of more than two CO 2 molecules from one malonic/bromomalonic acid molecule was observed. Novel reaction schemes containing carbenes are proposed for these "high Ce 4+ " decarboxylation channels. To check the new mechanism, HPLC measurements are planned as a continuation of the research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.