Quadruple glazing has become a high-end standard in the field of sealed insulating glass units. With more than three glass panes a set of internal heat-related technical problems emerges. Durability, being the most pressing problem, requires careful management of the primary sealant deformation, especially under summer environmental conditions. Namely, the role of the primary seal in insulating glass units is to protect their humidity-sensitive, low-emissivity coatings from moisture and the quality of such protection is a key factor in durability. In this paper, a new methodology is proposed for a feasibility assessment of a new multipane insulating glass unit design, where proper design enables avoidance of excessive strain on the primary seal. It focuses on the calculation of the primary sealant strains, which are nonhomogeneous and multiaxial according to different loading conditions. This approach leads to analytical expressions that enable convenient identification of the critical location on the primary sealant. Finally, feasibility is assessed with the proposed methodology for the newly developed highly insulative six-pane facade unit by means of a comparison of the calculated strain state with the anticipated allowable strains, based on technical practice.
In designing high-performance, lightweight components, cellular structures are one of the approaches to be considered. The present study aimed to analyze the effect of the infill line distance of 3D printed circular samples on their compressive elastic behavior. Lightweight cellular poly-lactic acid (PLA) samples with a triangular infill pattern were exposed to cyclic compressive loading and their stiffness was investigated. PLA is one of the most commonly used thermoplastic materials in additive manufacturing using the fused filament fabrication (FFF) process. Cylindrical samples with a diameter of 11.42 mm and a height of 10 mm were printed using FFF technology with two different infill line distances (1.6 mm and 2.4 mm). Comparing the nominal compressive stress-nominal strain curves under cyclic loading showed that the first cycle response was significantly different with respect to the subsequent ones. Furthermore, an analysis of the dependence of the modulus of elasticity on the effects of cyclic loading was performed. It was found that through elastic deformation, and combined elastic and plastic deformation, the samples’ properties such as stiffness could be altered.
Conventionally, plastic anisotropy is calibrated by using standard uniaxial tensile and biaxial test results. Alternatively, heterogeneous strain field specimens in combination with full-field measurements can be used for this purpose. As reported by the literature, such an approach reduces the number of required tests enormously, but it is challenging to obtain reliable results. This paper presents an alternative methodology, which represents a compromise between the conventional and heterogeneous strain field calibration technique. The idea of the method is to use simple tests, which can be conducted on the uniaxial testing machine, and to avoid the use of advanced measuring equipment. The procedure is accomplished by conducting standard tensile tests, which are simple and reliable, and by a novel heterogeneous strain field tensile test, to calibrate the biaxial stress state. Moreover, only two of the parameters required for full characterisation need to be inversely identified from the test response; the other parameters are directly determined from the uniaxial tensile test results. This way, a dimension of optimization space is reduced substantially, which increases the robustness and effectiveness of the optimization algorithm.
This paper aims to compare different heterogeneous test designs from the perspective of the confidence interval quantification of inversely identified parameters, where the influence of a DIC optical system systematic and random error are taken into account. Because the errors in optical measurement can arise from many reasons and sources, our methodology relies on the system's errors determined from initial sets of pictures acquired at the load-free state for hundreds of specimens (over 850 tests over the past three years). In this way, a prior probability distribution of systematic and random error, arisen from the system initial settings and testing procedures are determined. Further, by conducting an inverse identification procedure of linear orthotropic elastic material parameters, the influence of the error distributions is studied for different types of heterogeneous specimens. The presented methodology determines the DIC bias and random error propagation through the inverse identification procedure to individual parameters. For each specimen design, confidence intervals of identified material parameters were determined. The results show the appropriateness of a specimen design for the identification of particular material parameters.
In the paper, an alignment methodology of finite element and full-field measurement data of planar specimens is presented. The alignment procedure represents an essential part of modern material response characterisation using heterogeneous strain-field specimens. The methodology addresses both the specimen recognition from a measurement’s image and the alignment procedure and is designed to be applied on a single measurement system. This is essential for its practical application because both processes, shape recognition and alignment, must be performed only after the specimen is fully prepared for the digital image correlation (DIC) measurements (white background and black speckles) and placed into a testing machine. The specimen can be observed with a single camera or with a multi-camera system. The robustness of the alignment method is presented on a treatment of a specimen with a metamaterial-like structure and compared with the well-known iterative closest point (ICP) algorithm. The performance of the methodology is also demonstrated on a real DIC application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.