The use of lightweight structures is a major trend in the reduction of fuel consumption and CO2 emissions, especially in transport. Metal plastic hybrid structures are an efficient solution to use the best material at every point in the design space. In the state of the art production technologies, the metal parts are produced separately from the plastic parts. The injection moulding process is only used for forming the plastic parts and for joining. These process chains are very extensive. The article shows the development of new process combinations. The aim is a combination of metal forming and injection moulding in one die and one process. One part should be produced with every single stroke of the press.In the first step, deep drawing, injection molding and media based forming with the plastic melt were successfully merged in one tool and one process. It was possible to integrate the injection moulding process into a deep drawing machine. In the next step, it was possible to successfully combine hydroforming and injection molding. For this process combination the hydroforming process is integrated into an injection moulding press. Different surface structures of the metal tubes, such as sandblasting, knurling and laser structuring, were systematically tested regarding to their properties as an adhesion promoter. The target is to establish a purely mechanical connection between the hydroformed metal component and the injection moulded component from glass fibre reinforced plastic instead of the chemical bonding agents often used previously, such as Vestamelt®.
The investigation of a novel sensor system, integrated in the main load region of forming machines, is the challenge. Therefore, it is important that the thin film system has an excellent tribological quality in combination with a piezoresistive behaviour. The layer system is deposited on the polished surface of a steel substrate. It has such geometries that it can be easily integrated in the drawing cushion of a deep drawing machine. The thin film sensor system exists out of a piezoresistive hydrogenated carbon layer. Onto this layer arrays of chromium structures are deposited. The structures are protected against wear by an insulating silicon doped hydrogenated carbon layer. The whole thin film system has a thickness of about 9 ?m. During the forming process the steel plate is in direct touch with the sensor system and moves over it. The position of the steel is measured in dependence on the forming stadium. The sensor system works as a control system to ensure that the shape of the product is perfect and without any cracks or creases
Lightweight design for automotive applications gains more and more importance for future products, independent from the powertrain concept. One of the key issues in lightweight design is to utilize the right material for the right application using the right value at the right place. This results irrevocably in a multi-material design.
In order to increase the efficiency in manufacturing car components, the number of single parts in a component is decreased by increasing the complexity. Examples for the state of the art are tailored welded blanks in cold forming, tailored tempering in press hardening or metallic inlays in injection molding of polymers.
The challenge for future production scenarios of multi-material components is to combine existing technologies for metal- and polymer-based applications in efficient hybrid process chains.
This paper shows initial approaches of hybrid process chains for efficient manufacturing of hybrid metal-polymer components. These concepts are feasible for flat as well as for tubular applications. Beside the creation of the final geometric properties of the component by a forming process, integrated joining operations are increasingly required for the efficiency of the production process and the performance characteristics of the final component. Main target of this production philosophy is to create 100% ready-to-install components. This is shown in three examples for hybrid process combinations.
The first example deals with the combination of metal forming and injection molding of polymers. Example number two is the application of hybrid metal-polymer blanks. Finally, example number three shows the advantages of process integrated forming and joining of single basic components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.