The impacts of climate change on soil erosion may bring serious economic, social and environmental problems. However, few studies have investigated these impacts on continental scales. Here we assessed the influence of climate change on rainfall erosivity across Brazil. We used observed rainfall data and downscaled climate model output based on Hadley Center Global Environment Model version 2 (HadGEM2-ES) and Model for Interdisciplinary Research On Climate version 5 (MIROC5), forced by Representative Concentration Pathway 4.5 and 8.5, to estimate and map rainfall erosivity and its projected changes across Brazil. We estimated mean values of 10,437 mm ha−1 h−1 year−1 for observed data (1980–2013) and 10,089 MJ mm ha−1 h−1 year−1 and 10,585 MJ mm ha−1 h−1 year−1 for HadGEM2-ES and MIROC5, respectively (1961–2005). Our analysis suggests that the most affected regions, with projected rainfall erosivity increases ranging up to 109% in the period 2007–2040, are northeastern and southern Brazil. Future decreases of as much as −71% in the 2071–2099 period were estimated for the southeastern, central and northwestern parts of the country. Our results provide an overview of rainfall erosivity in Brazil that may be useful for planning soil and water conservation, and for promoting water and food security.
Abstract. In this paper, we present the Catchments Attributes for Brazil (CABra), which is a large-sample dataset for Brazilian catchments that includes long-term data (30 years) for 735 catchments in eight main catchment attribute classes (climate, streamflow, groundwater, geology, soil, topography, land cover, and hydrologic disturbance). We have collected and synthesized data from multiple sources (ground stations, remote sensing, and gridded datasets). To prepare the dataset, we delineated all the catchments using the Multi-Error-Removed Improved-Terrain Digital Elevation Model (MERIT DEM) and the coordinates of the streamflow stations provided by the Brazilian Water Agency, where only the stations with 30 years (1980–2010) of data and less than 10 % of missing records were included. Catchment areas range from 9 to 4 800 000 km2, and the mean daily streamflow varies from 0.02 to 9 mm d−1. Several signatures and indices were calculated based on the climate and streamflow data. Additionally, our dataset includes boundary shapefiles, geographic coordinates, and drainage area for each catchment, aside from more than 100 attributes within the attribute classes. The collection and processing methods are discussed, along with the limitations for each of our multiple data sources. CABra intends to improve the hydrology-related data collection in Brazil and pave the way for a better understanding of different hydrologic drivers related to climate, landscape, and hydrology, which is particularly important in Brazil, having continental-scale river basins and widely heterogeneous landscape characteristics. In addition to benefitting catchment hydrology investigations, CABra will expand the exploration of novel hydrologic hypotheses and thereby advance our understanding of Brazilian catchments' behavior. The dataset is freely available at https://doi.org/10.5281/zenodo.4070146 and https://thecabradataset.shinyapps.io/CABra/ (last access: 7 June 2021).
Abstract. In this paper, we present the Catchments Attributes for Brazil (CABra), which is a large-sample dataset for Brazilian catchments that includes long-term data (30 years) for 735 catchments in eight main catchment attribute classes (climate, streamflow, groundwater, geology, soil, topography, land-cover, and hydrologic disturbance). We have collected and synthesized data from multiple sources (ground stations, remote sensing, and gridded datasets). To prepare the dataset, we delineated all the catchments using the Multi-Error-Removed Improved-Terrain Digital Elevation Model and the coordinates of the streamflow stations provided by the Brazilian Water Agency, where only the stations with 30 years (1980–2010) of data and less than 10 % of missing records were included. Catchment areas range from 9 to 4 800 000 km2 and the mean daily streamflow varies from 0.02 to 9 mm d-1. Several signatures and indices were calculated based on the climate and streamflow data. Additionally, our dataset includes boundary shapefiles, geographic coordinates, and drainage area for each catchment, aside from more than 100 attributes within the attribute classes. The collection and processing methods are discussed along with the limitations for each of our multiple data sources. The CABra intends to improve the hydrology-related data collection in Brazil and pave the way for a better understanding of different hydrologic drivers related to climate, landscape, and hydrology, which is particularly important in Brazil, having continental-scale river basins and widely heterogeneous landscape characteristics. In addition to benefitting catchment hydrology investigations, CABra will expand the exploration of novel hydrologic hypotheses and thereby advance our understanding of Brazilian catchments' behavior. The dataset is freely available at https://doi.org/10.5281/zenodo.4070147.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.