The mechanisms of malarial anemia induction are poorly understood, but cytokines and autoantibodies are considered to play important roles. This work aimed at evaluating the degree of anemia and the plasmatic profile of the cytokines tumor necrosis factor alpha (TNF-␣), gamma interferon (IFN-␥), interleukin-12 (IL-12), migration inhibitory factor (MIF), and IL-10 and the monocyte chemotactic protein-1 (MCP-1) chemokine, as well as evaluating the presence of antibodies directed to components of the normal erythrocyte membrane and to cardiolipin in individuals with malaria from the Brazilian Amazon. No difference was observed in the frequency of anemia between patients infected by Plasmodium vivax and those infected by Plasmodium falciparum, and there was no relationship between the levels of parasitemia and the manifestations of anemia in P. vivax and P. falciparum patients. Significant increases in the concentrations of TNF-␣, IFN-␥, MIF, and MCP-1 were observed in patients with P. falciparum and P. vivax malaria, whereas the concentrations of IL-10 was increased only in patients with P. vivax infection. Higher concentrations of IL-12 and IL-10 were observed in the P. falciparum anemic patients, while for TNF-␣ this profile was observed in the nonanemic ones. P. vivax-infected and P. falciparum-infected patients with positive immunoglobulin M (IgM) or IgM and IgG responses, respectively, against blood-stage forms of the parasites had significantly lower hemoglobin levels than did those with negative responses. There was no correlation between the presence of anti-erythrocyte and anti-cardiolipin antibodies and the presence or intensity of the anemia. Our data suggest that in areas of low endemicity and unstable transmission of malaria, P. vivax and P. falciparum infections present similar characteristics in terms of the induction of anemia and cytokine responses.Severe malarial anemia and cerebral malaria are the main complications of Plasmodium falciparum infection. They are responsible for most of the estimated one to three million malaria-related deaths every year in the world, mainly among children below 5 years of age in sub-Saharan Africa (49). Severe malarial anemia is reported to be the earliest complication, usually affecting children below 2 years of age (57). Although severe anemia is a major concern in malaria pathology due to its high mortality rates, milder forms of anemia also are important, since this manifestation is responsible for considerable morbidity and is one of the major factors for the high disability-adjusted life years attributed to malaria (50,51,66). Iron deficiency, intestinal helminths, and human immunodeficiency virus infection make significant contributions to the pathogenesis of anemia in many African countries, but now there is substantial evidence suggesting that malaria is indeed a major underlying factor (28, 48).Although it has been estimated, the real impact of malarial anemia on the affected populations is unknown. The few available data mostly are restricted to studies ...
Macrorhabdus ornithogaster in ostrich, rhea, canary, zebra finch, free range chicken, turkey, guinea-fowl, columbina pigeon, toucan, chuckar partridge and experimental infection in chicken, japanese quail and mice [Macrorhabdus ornithogaster em avestruzes, ema, canário, mandarim, galinha, peru, galinha da Angola, pombo doméstico, rolinha, tucano, perdiz ABSTRACTSince 2000, Macrorhabdus ornithogaster "megabacteriosis" has been diagnosed in the avian diseases laboratory in a diversity of avian species and varied spectrum of disease. The disease in some species (chickens, turkeys, guinea fowls) was clinically characterized by emaciation, prostration, loss of appetite, cachexia and death, with a typically chronic course. A more acute disease was observed in finches (canary-Serinus and zebra-Taeniopygia) and budgerigars (Melopsittacus undulatus). The large rod shaped organism, visible from 100 times magnification, with and without staining, could be detected in sick and also in reasonably normal individuals of some species, such as chickens, turkeys, quails and pigeons. In rheas (Rhea americana), ostriches (Struthio camelus), canaries, zebra-finches, guinea-fowl (Numida meleagris) and budgerigars. The disease was severe, causing to up to 100% mortality. The infection could be detected in some species along with other infectious or disease problems, such as endoparasites (helminths, coccidia) and ectoparasitism (order Mallophaga or/and order Acarina). The cultivation of M. ornithogaster was successfully achieved in solid and liquid media, originated from chickens (four isolates), guinea fowl (1 isolate), chuckar partridge (1 isolate) and canary (1 isolate). A very interesting finding at microscopy was motility of M. ornithogaster, as detected both in cultures obtained on agar for pathogenic fungi and passaged into thioglycolate broth, as well as on samples observed in wet preparations from in vivo. Differences in colony aspects were noted among the isolates. Experimental infections were attempted in chicken and japanese quail, using a chicken isolate, allowing the detection of the organism in the proventriculus and liver in apparently normal birds. One chicken isolate was injected intraperitoneally in Balb/c mice and resulted in 100% mortality.
Abstract. This study was designed to experimentally reproduce enterotoxemia by Clostridium perfringens type D in cattle and to characterize the clinicopathologic findings of this disease. Fourteen 9-month-old calves were inoculated intraduodenally according to the following schedule: group 1 (n 5 4), C. perfringens type D whole culture; group 2 (n 5 3), C. perfringens type D washed cells; group 3 (n 5 5), C. perfringens type D filtered and concentrated supernatant; group 4 (n 5 2), sterile, nontoxic culture medium. In addition, all animals received a 20% starch solution in the abomasum. Ten animals from groups 1 (4/4), 2 (3/3), and 3 (3/5) showed severe respiratory and neurologic signs. Gross findings were observed in these 10 animals and consisted of acute pulmonary edema, excessive protein-rich pericardial fluid, watery contents in the small intestine, and multifocal petechial hemorrhages on the jejunal mucosa. The brain of one animal of group 2 that survived for 8 days showed multifocal, bilateral, and symmetric encephalomalacia in the corpus striatum. The most striking histologic changes consisted of perivascular high protein edema in the brain, and alveolar and interstitial proteinaceous pulmonary edema. The animal that survived for 8 days and that had gross lesions in the corpus striatum showed histologically severe, focal necrosis of this area, cerebellar peduncles, and thalamus. Koch's postulates have been met and these results show that experimental enterotoxemia by C. perfringens type D in cattle has similar clinical and pathologic characteristics to the natural and experimental disease in sheep.
BackgroundVisceral leishmaniasis (VL) is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2) protein that protects against experimental L. infantum infections in mice and dogs.Methodology/Principal FindingsPrimates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12) adsorbed in alum (rA2/rhIL-12/alum); two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2) followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum); and plasmid DNA encoding A2 gene (DNA-A2) boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2). Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol.Conclusions/SignificanceThe remarkable clinical protection induced by A2 in an animal model that is evolutionary close to humans qualifies this antigen as a suitable vaccine candidate against human VL.
The present study was carried out to investigate the immune response against Strongyloides venezuelensis infection in Balb/c mice previously immunized with larva-antigens or primed with live-larvae. Our results indicate that all primed mice developed a strong protection against challenge infection that remained active for 45 days. In mice primed with live-larvae the challenge infection resulted in great reduction of migrating larvae and the worms were completely eliminated from the small intestine before maturation. The protection pattern did not alter when the primary infection was aborted by drug treatment. In these experimental groups, the challenge infection was accompanied by a type-2 predominant immune response, intense IgE and reactive IgG1 production, and granulocyte infiltration in skin, lungs and intestine. The challenge infection in antigen-immunized mice also resulted in great reduction of migrating larvae. However, the worms that reached the host intestine matured, produced eggs and were eliminated similarly to the ones from nonimmunized mice. Protective mechanisms after immunization with larva antigen were migrating larva-specific and associated with a strong and mixed Th1 and Th2 response, without tissue granulocyte infiltration. In conclusion, protective immunity induced by a previous infection or antigen-immunization are stage-specific and operate through different effector mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.