This work aims to develop a low-cost human hand prosthesis manufactured through additive manufacturing. The methodology used for the development of the prosthesis used affordable and low-cost materials in the market. Tensile testing was performed to estimate the mechanical properties in order to verify the resistance of the printing material used. Afterwards, the mechanical feasibility study executed on the device was performed using finite element method. In conclusion, we can observe fundamental factors that influence the 3D printing process, especially in relation to its printing parameters and mechanical properties. Maximum stress, yield stress, modulus of elasticity, elongation, and hardness are the prominent properties that should be considered when choosing the polymeric material. The numerical simulation showed that the structure of the prosthesis did not present plastic deformations to the applied loads, proving its mechanical viability.
Os desafios da engenharia industrial na produção de alimentos, energia renovável e na promoção da qualidade de vida das pessoas.""Os desafios da engenharia industrial na produção de alimentos, energia renovável e na promoção da qualidade de vida das pessoas."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.