The kinetics and microstructural evolution of austenite formation in a low carbon steel, with initial microstructure composed of ferrite and pearlite, were studied during continuous heating, by using dilatometric analysis and measurements of microstructural parameters. The formation of austenite was observed to occur in two stages: (a) pearlite dissolution and (b) ferrite to austenite transformation. The critical temperatures of austenite formation in continuous heating increase with increasing heating rate, with greater influence on the finishing temperature of austenite formation. For both the 1°C/s and 0.1°C/s heating rates, the formation rate of austenite reaches a maximum at approximately the finishing temperature of pearlite dissolution, and the formation rate of austenite as a function of the temperature is greater at the higher heating rate.
The presence of shear bands in the deformed material before final annealing is very important for Goss and Cube textures formation in silicon steel [S.C. Paolinelli, M.A. Cunha, J. Magn. Magn. Mater. 255 (2003) pp. 379. [1]; J.T. Park, J.A. Szpunar, Acta Mater., 51 (2003) 3037. [2]]. The increase of the hot-band grain size can increase the number of shear bands, which favor the nucleation of these orientations. In this work, the effect of the hot band grain size variation, promoted by varying the hot rolling finishing temperature, on final structure and magnetic properties was investigated for 3% Si alloy. It was found that the increase of the hot-band grain size increases the occurrence of shear bands and promotes an increase of Z fiber fraction and a reduction of g fiber fraction, improving the magnetic induction. On the other hand, the final grain size is reduced when the hot-band grain size is larger than 190 mm, deteriorating the core loss values in spite of the texture benefits. The reduction of final grain size was explained by the increase of the number of nuclei at the beginning of the recrystallization caused by the increase of shear bands in the deformed material. r
The effect of carbon content on the magnetic ageing index and Vickers hardness evolution on annealed samples of 2%Si non-oriented grain electrical steel was studied. Samples with 40 and 60ppm carbon content were subjected at ageing temperatures of 200 and 225ºC, respectively. During the ageing treatment, the cycle was interrupted on several time intervals in order to obtain the core loss and to determine Vickers hardness. The precipitates were characterized using scanning electron microscope (SEM). Using the software MatCalc, computer simulations of ε-carbide precipitation were performed and compared with experimental data from literature. The results for both carbon contents showed that the maximum hardness value was achieved in shorter time than that to achieve the maximum magnetic ageing, indicating that the critical size of precipitates more harmful to the magnetic properties is larger than the ones that maximize the hardness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.