In situ tensile tests employing digital image correlation were conducted to study the martensitic transformation of oligocrystalline Fe–Mn–Al–Ni shape memory alloys in depth. The influence of different grain orientations, i.e., near-〈001〉 and near-〈101〉, as well as the influence of different grain boundary misorientations are in focus of the present work. The results reveal that the reversibility of the martensite strongly depends on the type of martensitic evolving, i.e., twinned or detwinned. Furthermore, it is shown that grain boundaries lead to stress concentrations and, thus, to formation of unfavored martensite variants. Moreover, some martensite plates seem to penetrate the grain boundaries resulting in a high degree of irreversibility in this area. However, after a stable microstructural configuration is established in direct vicinity of the grain boundary, the transformation begins inside the neighboring grains eventually leading to a sequential transformation of all grains involved.
Prestressing of concrete is a commonly used technique in civil engineering to achieve long spans, reduced structural thicknesses, and resource savings. However, in terms of application, complex tensioning devices are necessary, and prestress losses due to shrinkage and creep of the concrete are unfavourable in terms of sustainability. In this work, a prestressing method using novel Fe-Mn-Al-Ni shape memory alloy rebars as a tensioning system in UHPC is investigated. A generated stress of about 130 MPa was measured for the shape memory alloy rebars. For the application in UHPC, the rebars are prestrained prior to the manufacturing process of the concrete samples. After sufficient hardening of the concrete, the specimens are heated inside an oven to activate the shape memory effect and, thus, to introduce the prestress into the surrounding UHPC. It is clearly shown that an improvement in maximum flexural strength and rigidity is achieved due to the thermal activation of the shape memory alloy rebars compared to non-activated rebars. Future research will have to focus on the design of the shape memory alloy rebars in relation to construction applications and the investigation of the long-term performance of the prestressing system.
In the present study, an iron-manganese-aluminum-nickel (Fe-Mn-Al-Ni) shape memory alloy was processed on an austenitic steel (AISI 304) build platform by electron beam melting in order to study the feasibility of realizing functionally graded structures consisting of two different materials (i.e., a functional and a structural material). Compression specimens consisting of the processed shape memory alloy and the austenitic build platform in equal parts were investigated. The microstructure was analyzed in the as-built state and after different heat treatments, focusing on the interface between both materials. Scanning electron microscopy and electron backscatter diffraction measurements were conducted to reveal the relation between processing steps and the microstructural evolution. It is shown that the microstructure after the electron beam melting process is characterized by a preferred 〈001〉 orientation with respect to the build direction and that a suitable microstructure for good pseudoelastic performance can be realized by post-processing heat treatments. Finally, incremental strain tests up to 12% compressive strain were conducted to analyze the overall mechanical performance of the specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.