Identification of all expressed transcripts in a sequenced genome is essential both for genome analysis and for realization of the goals of systems biology. We used the transcriptional profiling technology called 'massively parallel signature sequencing' to develop a comprehensive expression atlas of rice (Oryza sativa cv Nipponbare). We sequenced 46,971,553 mRNA transcripts from 22 libraries, and 2,953,855 small RNAs from 3 libraries. The data demonstrate widespread transcription throughout the genome, including sense expression of at least 25,500 annotated genes and antisense expression of nearly 9,000 annotated genes. An additional set of approximately 15,000 mRNA signatures mapped to unannotated genomic regions. The majority of the small RNA data represented lower abundance short interfering RNAs that match repetitive sequences, intergenic regions and genes. Among these, numerous clusters of highly regulated small RNAs were readily observed. We developed a genome browser (http://mpss.udel.edu/rice) for public access to the transcriptional profiling data for this important crop.
DNA polymorphisms such as insertion/deletions and duplications affecting genome segments larger than 1 kb are known as copy-number variations (CNVs) or structural variations (SVs). They have been recently studied in animals and humans by using array-comparative genome hybridization (aCGH), and have been associated with several human diseases. Their presence and phenotypic effects in plants have not been investigated on a genomic scale, although individual structural variations affecting traits have been described. We used aCGH to investigate the presence of CNVs in maize by comparing the genome of 13 maize inbred lines to B73. Analysis of hybridization signal ratios of 60,472 60-mer oligonucleotide probes between inbreds in relation to their location in the reference genome (B73) allowed us to identify clusters of probes that deviated from the ratio expected for equal copy-numbers. We found CNVs distributed along the maize genome in all chromosome arms. They occur with appreciable frequency in different germplasm subgroups, suggesting ancient origin. Validation of several CNV regions showed both insertion/deletions and copy-number differences. The nature of CNVs detected suggests CNVs might have a considerable impact on plant phenotypes, including disease response and heterosis.
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) Ϸ500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.T he genomes of soil-and water-borne free-living bacteria have received relatively little attention thus far in comparison to pathogenic and extremophilic organisms, yet they provide fundamental insights into environmental adaptation strategies and represent a rich source of genes with biotechnological potential and medical utility. A particularly interesting organism of this kind is Chromobacterium violaceum, a Gram-negative -proteobacterium first described at the end of the 19th century (1), which dominates a variety of ecosystems in tropical and subtropical regions. This bacterium has been found to be highly abundant in the water and borders of the Negro river, a major component of the Brazilian Amazon (2) and as a result has been studied in Brazil over the last three decades. These, in general, have focused on the most notable product of the bacterium, the violacein pigment, which has already been introduced as a therapeutic compound for dermatological purposes (3). Violacein also exhibits antimicrobial activity against the important tropical pathogens Mycobacterium tuberculosis (4), Trypanosoma cruzi (5), and Leishmania sp. (6) and is reported to have other bactericidal (2, 7-10), antiviral (11), and anticancer (12, 13) activities.Some other aspects of the biotechnological potential of C. violaceum have also begun to be explored, including the synthesis of poly(3-hydroxyvaleric acid) homopolyester and other shortchain polyhydroxyalkanoates, which might represent alternatives to plastics derived from petrochemicals (14, 15), the hydrolysis of plastic films (16), and the solubilization of gold through a mercury-free process, thereby avoiding environmental contamination (17, 18). These studies, however, have been based on knowledge of only a tiny fraction of the genetic constitution of the organism. In addition, the more basic issues of the mechanisms and strategies underlying the adaptability of C. violaceum, including its observed but infrequent infection of h...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.