Emulsion stabilisation of base layers surfaced with chip seals often proves problematic, with chips punching into the base and early distress. This can be aggravated by the use of modified binders that restricts the evaporation of moisture from pavement layers. The introduction of new-age (nano)-modified emulsion (NME) stabilisation has the advantage that water is chemically repelled from the stabilised layer, resulting in an accelerated development of strength. A need was identified to evaluate the early-life performance of selected chip and Cape seals, together with identified modified binders on anionic NME-stabilised base layers constructed with materials traditionally classified as unsuitable, using archaic empirically derived tests. Three different chip seal surfacings with unconventional modified binders were constructed and evaluated using accelerated pavement testing (APT) with the Model Mobile Load Simulator—3rd model (MMLS3). The objectives of the experimental design and testing were to evaluate the binder performance, chip seal performance in terms of early loss of chips before chip orientation, punching of the chips into the anionic NME-stabilised base and deformation characteristics of a Cape seal that was hand-laid using an anionic NME slurry without any cement filler. It was shown that that chip seal surfacings can be used at low risk, on a base layer containing materials with fines exceeding 22%. The selection of specific modified binders can reduce risks associated with chip seal surfacings, which can impact construction limitations. The recommended use of elastomer-modified binders on newly constructed or rehabilitated layers, resulting in moisture entrapment, needs to be reconsidered.
A Perfectly Accurate, Synthetic dataset for Multi-View Stereopsis (PASMVS) is presented, consisting of 400 scenes and 18,000 model renderings together with ground truth depth maps, camera intrinsic and extrinsic parameters, and binary segmentation masks. Every scene is rendered from 45 different camera views in a circular pattern, using Blender's path-tracing rendering engine. Every scene is composed from a unique combination of two camera focal lengths, four 3D models of varying geometrical complexity, five high definition, high dynamic range (HDR) environmental textures to replicate photorealistic lighting conditions and ten materials. The material properties are primarily specular, with a selection of more diffuse materials for reference. The combination of highly specular and diffuse material properties increases the reconstruction ambiguity and complexity for MVS reconstruction algorithms and pipelines, and more recently, state-of-the-art architectures based on neural network implementations. PASMVS serves as an addition to the wide spectrum of available image datasets employed in computer vision research, improving the precision required for novel research applications.
Emulsion stabilisation of base layers surfaced with chip seals often proves problematic with chips punching into the base and early distress. This can be aggravated by the use of modified binders that restricts the evaporation of moisture from pavement layers. The introduction of New-age (Nano) Modified Emulsion (NME) stabilisation has the advantage that water is chemically repelled from the stabilised layer resulting in an accelerated development of strength. A need was identified to evaluate the early life performance of selected chip seals, together with identified binders. Three different chip seal surfacings with unconventional modified binders were constructed and evaluated using Accelerated Pavement Testing (APT) with the MMLS3. The objectives of the experimental design and testing were to evaluate binder performance, early loss of chips before chip orientation at low temperatures, punching of the chips into the NME stabilised base, deformation characteristics of a Cape seal and the effect of the use of a standard normal modified binder. This paper contains details of the NME base layer, the binder and seal selection and the test results. It is shown that a cost-effective thin chip seal in combination with a suitable binder can be used on a NME stabilised base with confidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.