Agricultural resource derivatives (ARDs) such as hydrolysate soy protein concentrate (HSPC), whey protein concentrate (WPC), and cashew apple juice (CAJ) were studied with focus on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Supplementation of the media with corn steep liquor (CSL) was also evaluated. Synthetic medium containing glucose and yeast extract was used as control. CAJ was a promising medium for the production of HA. It produced the highest amount of HA (0.89 g L(-1)), similar to that of the control (0.86 g L(-1)). WPC and HSPC media were the most effective for the production of biomass. CSL did not influence the production of HA when HSPC and WPC were used. However, in the synthetic medium it doubled the yield of HA from glucose. The average molecular weight of HA ranged from 10(3) to 10(4)Da for the ARDs and 10(7)Da for the synthetic medium.
-Superparamagnetic nanomaterials have attracted interest in many areas due to the high saturation magnetization and surface area. For enzyme immobilization, these properties favor the enzyme-support contact during the immobilization reaction and easy separation from the reaction mixture by use of low-cost magnetic processes. Iron oxide magnetic nanoparticles (Fe3O4, MNPs), produced by the co-precipitation method, functionalized with 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GLU), were evaluated as a solid support for Candida antarctica lipase B (CALB) immobilization. The nanomagnetic derivative (11nm) obtained after CALB immobilization (MNPs/APTES/GLU/CALB) was evaluated as biocatalyst in isoniazide (INH) synthesis using ethyl isonicotinate (INE) and hydrazine hydrate (HID) as substrates, in 1,4-dioxane. The results showed that MNPs/APTES/CALB had a similar performance when compared to a commercial enzyme Novozym 435, showing significant advantages over other biocatalysts, such as Rhizhomucor miehei lipase (RML) and CALB immobilized on non-conventional, low-cost, chitosan-based supports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.