Fully printed and flexible inorganic electrolyte gated transistors (EGTs) on paper with a channel layer based on an interconnected zinc oxide (ZnO) nanoparticle matrix are reported in this work. The required rheological properties and good layer formation after printing are obtained using an eco-friendly binder such as ethyl cellulose (EC) to disperse the ZnO nanoparticles. Fully printed devices on glass substrates using a composite solid polymer electrolyte as gate dielectric exhibit saturation mobility above 5 cm2 V−1 s−1 after annealing at 350 °C. Proper optimization of the nanoparticle content in the ink allows for the formation of a ZnO channel layer at a maximum annealing temperature of 150 °C, compatible with paper substrates. These devices show low operation voltages, with a subthreshold slope of 0.21 V dec−1, a turn on voltage of 1.90 V, a saturation mobility of 0.07 cm2 V−1 s−1 and an Ion/Ioff ratio of more than three orders of magnitude.
Diatom frustules, with their hierarchical three-dimensional patterned silica structures at nano to micrometer dimensions, can be a paragon for the design of lightweight structural materials. However, the mechanical properties of frustules, especially the species with pennate symmetry, have not been studied systematically. A novel approach combining in situ micro-indentation and high-resolution X-ray computed tomography (XCT)-based finite element analysis (FEA) at the identical sample is developed and applied to Didymosphenia geminata frustule. Furthermore, scanning electron microscopy and transmission electron microscopy investigations are conducted to obtain detailed information regarding the resolvable structures and the composition. During the in situ micro-indentation studies of Didymosphenia geminata frustule, a mainly elastic deformation behavior with displacement discontinuities/non-linearities is observed. To extract material properties from obtained load-displacement curves in the elastic region, elastic finite element method (FEM) simulations are conducted. Young’s modulus is determined as 31.8 GPa. The method described in this paper allows understanding of the mechanical behavior of very complex structures.
The indentation modulus of thin films of porous organosilicate glass with a nominal porosity content of 30% and thicknesses of 350nm, 200nm, and 46nm is determined with help of atomic force acoustic microscopy (AFAM). This scanning probe microscopy based technique provides the highest possible depth resolution. The values of the indentation modulus obtained for the 350nm and 200nm thin films were respectively 6.3GPa±0.2GPa and 7.2GPa±0.2GPa and free of the substrate influence. The sample with the thickness of 46nm was tested in four independent measurement sets. Cantilevers with two different tip radii of about 150nm and less than 50nm were applied in different force ranges to obtain a result for the indentation modulus that was free of the substrate influence. A detailed data analysis yielded value of 8.3GPa±0.4GPa for the thinnest film. The values of the indentation modulus obtained for the thin films of porous organosilicate glasses increased with the decreasing film thickness. The stiffening observed for the porous films could be explained by evolution of the pore topology as a function of the film thickness. To ensure that our results were free of the substrate influence, we analyzed the ratio of the sample deformation as well as the tip radius to the film thickness. The results obtained for the substrate parameter were compared for all the measurement series and showed, which ones could be declared as free of the substrate influence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.