The need to optimize seed quality assessment using new, more accessible, and modern computational resources has led to the emergence of new tools. In this paper, we introduce SeedCalc, a new R software package developed to process germination and seedling length data. The functions included in SeedCalc allow fast and efficient data processing, offering greater reliability to the variables generated and facilitating statistical analysis itself since the data are already processed with the appropriate structure to be statistically analyzed in the R software. SeedCalc is available free of charge at https://CRAN.R-project.org/package=SeedCalc.
Optical sensors combined with machine learning algorithms have led to significant advances in seed science. These advances have facilitated the development of robust approaches, providing decision-making support in the seed industry related to the marketing of seed lots. In this study, a novel approach for seed quality classification is presented. We developed classifier models using Fourier transform near-infrared (FT-NIR) spectroscopy and X-ray imaging techniques to predict seed germination and vigor. A forage grass (Urochloa brizantha) was used as a model species. FT-NIR spectroscopy data and radiographic images were obtained from individual seeds, and the models were created based on the following algorithms: linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), random forest (RF), naive Bayes (NB), and support vector machine with radial basis (SVM-r) kernel. In the germination prediction, the models individually reached an accuracy of 82% using FT-NIR data, and 90% using X-ray data. For seed vigor, the models achieved 61% and 68% accuracy using FT-NIR and X-ray data, respectively. Combining the FT-NIR and X-ray data, the performance of the classification model reached an accuracy of 85% to predict germination, and 62% for seed vigor. Overall, the models developed using both NIR spectra and X-ray imaging data in machine learning algorithms are efficient in quickly, non-destructively, and accurately identifying the capacity of seed to germinate. The use of X-ray data and the LDA algorithm showed great potential to be used as a viable alternative to assist in the quality classification of U. brizantha seeds.
Non-destructive and high performance analyses are highly desirable and important for assessing the quality of forest seeds. The aim of this study was to relate parameters obtained from semi-automated analysis of radiographs of Leucaena leucocephala seeds to their physiological potential by means of multivariate analysis. To do so, seeds from five lots collected from parent trees from the region of Viçosa, MG, Brazil, were used. The study was carried out through analysis of radiographic images of seeds, from which the percentage of damaged seeds (predation and fungi), and measurements of area, perimeter, circularity, relative density, and integrated density of the seeds were obtained. After the X-ray test, the seeds were tested for germination in order to assess variables related to seed physiological quality. Multivariate statistics were applied to the data generated, with use of principal component analysis (PCA). X-ray testing allowed visualization of details of the internal structure of seeds and differences regarding density of seed tissues. Semi-automated analysis of radiographic images of Leucaena leucocephala seeds provides information on seed physical characteristics and generates parameters related to seed physiological quality in a simple, fast, and inexpensive manner.
Obtaining image-based information is a powerful approach to capture and quantify seed vigor data. However, commercial systems that facilitate the processing and acquisition of images are often cost prohibitive. This study aimed to evaluate the efficiency of the Seedling Analysis System (Sistema de Análise de Plântulas - SAPL®), in order to analyze the physiological potential of soybean seeds, in comparison with the information provided by vigor tests which are traditionally recommended for this species. Nine lots of soybean seeds were submitted to germination, germination speed, seedling emergence, cold test and electrical conductivity tests. In the SAPL® analyzes, seedlings of four and six days, counted from the beginning of the germination test, were evaluated, resulting in values for seedling length, growth, development uniformity, vigor index and corrected vigor index. The evaluated lots with emergence greater than 90 % showed a vigor index higher than 600 and 800, respectively in the fourth and sixth days. The indexes generated by SAPL®, except for the uniformity index, presented positive and high correlations with the traditional tests (> 0.80). SAPL® is efficient in identifying differences in the vigor of soybean seed lots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.