Novel ultrathin dual-functional metalenses are proposed, fabricated, tested, and verified in the microwave regime for the first time. The significance is that their anomalous transmission efficiency almost reaches the theoretical limit of 25%, showing a remarkable improvement compared with earlier ultrathin metasurface designs with less than 5% coupling efficiency. The planar metalens proposed empowers significant reduction in thickness, versatile focusing behavior, and high transmission efficiency simultaneously.
The so-called PT symmetric devices, which feature ε((-x)) = ε((x))* associated with parity-time symmetry, incorporate both gain and loss and can present a singular eigenvalue behaviour around a critical transition point. The scheme, typically based on co-directional coupled waveguides, is here transposed to the case of variable gain on one arm with fixed losses on the other arm. In this configuration, the scheme exploits the full potential of plasmonics by making a beneficial use of their losses to attain a critical regime that makes switching possible with much lowered gain excursions. Practical implementations are discussed based on existing attempts to elaborate coupled waveguide in plasmonics, and based also on the recently proposed hybrid plasmonics waveguide structure with a small low-index gap, the PIROW (Plasmonic Inverse-Rib Optical Waveguide).
In this letter, we present the characterization and modeling of a metamaterial-based resonant cavity for ultrathin directive printed antennas. A planar artificial magnetic conductor is used for the two reflectors of the Fabry–Pérot-type resonant cavity. One reflector behaves as a high impedance surface, and serves as a substrate for the printed antenna. The other reflector is a partially reflective surface used as a transmitting window. The cavity is operated on subwavelength modes, the smallest cavity thickness being of the order of λ∕60. A drastic enhancement of the antenna directivity and gain is obtained over a relatively wide band from 7.5to10.1GHz, corresponding to a range of cavity thicknesses from ∼λ∕3 to ∼λ∕60. The cavity resonance is seen to be correctly predicted from the standard ray theory approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.