Surfactants, such as glycolipids, are specialty compounds that can be encountered daily in cleaning agents, pharmaceuticals or even in food. Due to their wide range of applications and, more notably, their presence in hygiene products, the demand is continuously increasing worldwide. The established chemical synthesis of glycolipids presents several disadvantages, such as lack of specificity and selectivity. Moreover, the solubility of polyols, such as sugars or sugar alcohols, in organic solvents is rather low. The enzymatic synthesis of these compounds is, however, possible in nearly water-free media using inexpensive and renewable building blocks. Using lipases, ester formation can be achieved under mild conditions. We propose, herein, a “2-in-1” system that overcomes solubility problems, as a Deep Eutectic System (DES) made of sorbitol and choline chloride replaces either a purely organic or aqueous medium. For the first time, 16 commercially available lipase formulations were compared, and the factors affecting the conversion were investigated to optimize this process, owing to a newly developed High-Performance Liquid Chromatography-Evaporative Light Scattering Detector (HPLC-ELSD) method for quantification. Thus, using 50 g/L of lipase formulation Novozym 435® at 50 °C, the optimized synthesis of sorbitol laurate (SL) allowed to achieve 28% molar conversion of 0.5 M of vinyl laurate to its sugar alcohol monoester when the DES contained 5 wt.% water. After 48h, the de novo synthesized glycolipid was separated from the media by liquid–liquid extraction, purified by flash-chromatography and characterized thoroughly by one- and two-dimensional Nuclear Magnetic Resonance (NMR) experiments combined to Mass Spectrometry (MS). In completion, we provide initial proof of scalability for this process. Using a 2.5 L stirred tank reactor (STR) allowed a batch production reaching 25 g/L in a highly viscous two-phase system.
The successful synthesis of chiral amines from ketones using ω-transaminases has been shown in many cases in the last two decades. In contrast, the amination of β-keto acids is a special and relatively new challenge, as they decompose easily in aqueous solution. To avoid this, transamination of the more stable β-keto esters would be an interesting alternative. For this reason, ω-transaminases were tested in this study, which enabled the transamination of the β-keto ester substrate ethyl benzoylacetate. Therefore, a ω-transaminase library was screened using a coloring o-xylylenediamine assay. The ω-transaminase mutants 3FCR_4M and ATA117 11Rd show great potential for further engineering experiments aiming at the synthesis of chiral (S)- and (R)-β-phenylalanine esters. This alternative approach resulted in the conversion of 32% and 13% for the (S)- and (R)-enantiomer, respectively. Furthermore, the (S)-β-phenylalanine ethyl ester was isolated by performing a semi-preparative synthesis.
Mechanochemical and biocatalytic approaches in modern research are two major assets to develop greener processes. In the present study, these modular tools of sustainability are pointed toward the production of versatile and daily employed compounds such as surfactants. Toward this aim, glycolipids, a class of nonionic surfactants composed of ubiquitous and primary metabolites such as sugar and fatty acid moieties, represent a promising alternative to petroleum-derived surface-active agents. Therefore, the combination of biocatalysis with mechanochemistry aiming at glycolipid synthesis seemed a logical step that was taken in this study for the first time. The monoacylated model compound glucose-6- O -decanoate was synthesized with the help of a bead mill apparatus using two different unconventional dissolved reaction systems, namely, menthol-based hydrophobic deep eutectic solvents and 2-methyl-2-butanol, thus reaching up to 12% yield in the latter based on the conversion of vinyl decanoate, after only 90 min of reaction. In addition, a neat reaction system using an excess of vinylated fatty ester as an adjuvant allowed a 27 mM/h space-time yield. The overall significant increase in productivities, up to 6 times, compared to standard heating and shaking methods, shows the tremendous potential of mechanoenzymatic synthesis.
Regardless of the applications: therapeutic vehicle or membrane model to mimic complex biological systems; it is of a great importance to develop simplified, reproducible and rapid model assays allowing for a relevant assessment of the liposomal membrane oxidation and therefore antioxidant activity of selected molecules. Here, we describe a new and high-throughput assay that we called "Vesicle Conjugated Autoxidizable Triene (VesiCAT)". It is based on specific UV absorbance spectral properties of a new phospholipid probe, synthesized with natural conjugated eleostearic acid extracted from Tung oil. The VesiCAT assay has been developed with two different radical generators (2,2'-azobis(2-amidinopropane) dihydrochloride; AAPH and 2,2'-azobis(2,4-dimethylvaleronitrile); AMVN), producing a constant flux of oxidant species, either in membrane or in aqueous phase. This method appears very efficient in assessing the effect of various pure antioxidant molecules in their ability to preserve liposomes from oxidative degradation. In addition, the AAPH- and AMVN-induced oxidations offer the possibility of extracting different but complementary information with respect to the antioxidants efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.