PurposeThe aims of this study were to determine the objective and subjective image quality of high-pitch computed tomography (CT) angiography of the aorta in clinical dual-source photon-counting detector CT (PCD-CT) and to compare the image quality to conventional dual-source energy-integrating detector CT (EID-CT) in the same patients at equal radiation dose.Materials and MethodsPatients with prior CT angiography of the thoracoabdominal aorta acquired on third-generation dual-source EID-CT in the high-pitch mode and with automatic tube voltage selection (ATVS, reference tube voltage 100 kV) were included. Follow-up imaging was performed on a first-generation, clinical dual-source PCD-CT scanner in the high-pitch and multienergy (QuantumPlus) mode at 120 kV using the same contrast media protocol as with EID-CT. Radiation doses between scans were matched by adapting the tube current of PCD-CT. Polychromatic images for both EID-CT and PCD-CT (called T3D) and virtual monoenergetic images at 40, 45, 50, and 55 keV for PCD-CT were reconstructed. Computed tomography attenuation was measured in the aorta; noise was defined as the standard deviation of attenuation; contrast-to-noise ratio (CNR) was calculated. Subjective image quality (noise, vessel attenuation, vessel sharpness, and overall quality) was rated by 2 blinded, independent radiologists.ResultsForty patients were included (mean age, 63 years; 8 women; mean body mass index [BMI], 26 kg/m2). There was no significant difference in BMI, effective diameter, or radiation dose between scans (all P's > 0.05). The ATVS in EID-CT selected 70, 80, 90, 100, 110, and 120 kV in 2, 14, 14, 7, 2, and 1 patients, respectively. Mean CNR was 17 ± 8 for EID-CT and 22 ± 7, 20 ± 6, 18 ± 5, 16 ± 5, and 12 ± 4 for PCD-CT at 40, 45, 50, 55 keV, and T3D, respectively. Contrast-to-noise ratio was significantly higher for 40 and 45 keV of PCD-CT as compared with EID-CT (both P's < 0.05). The linear regression model (adjusted R2, 0.38; P < 0.001) revealed that PCD-CT reconstruction (P < 0.001), BMI group (P = 0.007), and kV of the EID-CT scan (P = 0.01) were significantly associated with CNR difference, with an increase by 34% with PCD-CT for overweight as compared with normal weight patients. Subjective image quality reading revealed slight differences between readers for subjective vessel attenuation and sharpness, whereas subjective noise was rated significantly higher for 40 and 45 keV (P < 0.001) and overall quality similar (P > 0.05) between scans.ConclusionsHigh-pitch PCD-CT angiography of the aorta with VMI at 40 and 45 keV resulted in significantly increased CNR compared with EID-CT with ATVS at matched radiation dose. The CNR gain of PCD-CT increased in overweight patients. Taking into account the subjective analysis, VMI at 45 to 50 keV is proposed as the best trade-off between objective and subjective image quality.
Background: An iterative reconstruction (IR) algorithm was introduced for clinical photon-counting detector (PCD) CT.Purpose: To investigate the image quality and the optimal strength level of a quantum IR algorithm (QIR; Siemens Healthcare) for virtual monoenergetic images and polychromatic images (T3D) in a phantom and in patients undergoing portal venous abdominal PCD CT. Materials and Methods:In this retrospective study, noise power spectrum (NPS) was measured in a water-filled phantom. Consecutive oncologic patients who underwent portal venous abdominal PCD CT between March and April 2021 were included. Virtual monoenergetic images at 60 keV and T3D were reconstructed without QIR (QIR-off; reference standard) and with QIR at four levels (QIR 1-4; index tests). Global noise index, contrast-to-noise ratio (CNR), and voxel-wise CT attenuation differences were measured. Noise and texture, artifacts, diagnostic confidence, and overall quality were assessed qualitatively. Conspicuity of hypodense liver lesions was rated by four readers. Parametric (analyses of variance, paired t tests) and nonparametric tests (Friedman, post hoc Wilcoxon signed-rank tests) were used to compare quantitative and qualitative image quality among reconstructions. Results:In the phantom, NPS showed unchanged noise texture across reconstructions with maximum spatial frequency differences of 0.01 per millimeter. Fifty patients (mean age, 59 years 6 16 [standard deviation]; 31 women) were included. Global noise index was reduced from QIR-off to QIR-4 by 45% for 60 keV and by 44% for T3D (both, P , .001). CNR of the liver improved from QIR-off to QIR-4 by 74% for 60 keV and by 69% for T3D (both, P , .001). No evidence of difference was found in mean attenuation of fat and liver (P = .79-.84) and on a voxel-wise basis among reconstructions. Qualitatively, QIR-4 outperformed all reconstructions in every category for 60 keV and T3D (P value range, ,.001 to .01). All four readers rated QIR-4 superior to other strengths for lesion conspicuity (P value range, ,.001 to .04). Conclusion:In portal venous abdominal photon-counting detector CT, an iterative reconstruction algorithm (QIR; Siemens Healthcare) at high strength levels improved image quality by reducing noise and improving contrast-to-noise ratio and lesion conspicuity without compromising image texture or CT attenuation values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.