The field of chiral inorganic nanostructures is rapidly expanding. It started from the observation of strong circular dichroism during the synthesis of individual nanoparticles (NPs) and their assemblies and expanded to sophisticated synthetic protocols involving nanostructures from metals, semiconductors, ceramics, and nanocarbons. Besides the well-established chirality transfer from bioorganic molecules, other methods to impart handedness to nanoscale matter specific to inorganic materials were discovered, including three-dimentional lithography, multiphoton chirality transfer, polarization effects in nanoscale assemblies, and others. Multiple chiral geometries were observed with characteristic scales from ångströms to microns. Uniquely high values of chiral anisotropy factors that spurred the development of the field and differentiate it from chiral structures studied before, are now well understood; they originate from strong resonances of incident electromagnetic waves with plasmonic and excitonic states typical for metals and semiconductors. At the same time, distinct similarities with chiral supramolecular and biological systems also emerged. They can be seen in the synthesis and separation methods, chemical properties of individual NPs, geometries of the nanoparticle assemblies, and interactions with biological membranes. Their analysis can help us understand in greater depth the role of chiral asymmetry in nature inclusive of both earth and space. Consideration of both differences and similarities between chiral inorganic, organic, and biological nanostructures will also accelerate the development of technologies based on chiroplasmonic and chiroexcitonic effects. This review will cover both experiment and theory of chiral nanostructures starting with the origin and multiple components of mirror asymmetry of individual NPs and their assemblies. We shall consider four different types of chirality in nanostructures and related physical, chemical, and biological effects. Synthetic methods for chiral inorganic nanostructures are systematized according to chirality types, materials, and scales. We also assess technological prospects of chiral inorganic materials with current front runners being biosensing, chiral catalysis, and chiral photonics. Prospective venues for future fundamental research are discussed in the conclusion of this review.
Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic CoO nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.
The structural complexity of composite biomaterials and biomineralized particles arises from the hierarchical ordering of inorganic building blocks over multiple scales. Although empirical observations of complex nanoassemblies are abundant, the physicochemical mechanisms leading to their geometrical complexity are still puzzling, especially for nonuniformly sized components. We report the self-assembly of hierarchically organized particles (HOPs) from polydisperse gold thiolate nanoplatelets with cysteine surface ligands. Graph theory methods indicate that these HOPs, which feature twisted spikes and other morphologies, display higher complexity than their biological counterparts. Their intricate organization emerges from competing chirality-dependent assembly restrictions that render assembly pathways primarily dependent on nanoparticle symmetry rather than size. These findings and HOP phase diagrams open a pathway to a large family of colloids with complex architectures and unusual chiroptical and chemical properties.
Chiral assemblies of plasmonic nanoparticles are known for strong circular dichroism but not for high optical asymmetry, which is limited by the unfavorable combination of electrical and magnetic field components compounded by strong scattering. Here we show that these limitations can be overcome by long-range organization of nanoparticles similar to liquid crystals found in helical assemblies of gold nanorods with human islet amyloid polypeptide. Strong polarization-dependent spectral shift and reduced scattering of energy states with antiparallel orientation of dipoles activated in assembled helices increase optical asymmetry g-factors by more than 4600 times. The liquid crystal-like color variations and nanorods-accelerated fibrillation enable drug screening in complex biological media. Improvement of long-range order also provides structural guidance for the design of materials with high optical asymmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.