RTCB is the catalytic subunit of the metazoan tRNA ligase complex (tRNA-LC) that plays essential roles in tRNA biogenesis and unfolded protein response. The catalytic center of RTCB contains a conserved cysteine that is susceptible to metal ion-induced oxidative inactivation. The flavin-containing oxidoreductase PYROXD1 preserves the activity of mammalian tRNA-LC in a NAD(P)H-dependent manner, but its protective mechanism remains elusive. Here we report a cryo-EM structure of human RTCB in complex with PYROXD1, revealing that PYROXD1 directly interacts with the catalytic center of RTCB through its C-terminal tail. NAD(P)H binding and FAD reduction allosterically control PYROXD1 activity and RTCB recruitment and PYROXD1, while PYROXD1 reoxidation enables timed release of RTCB. PYROXD1 interaction is mutually exclusive with Archease-mediated RTCB guanylylation, and guanylylated RTCB is intrinsically protected from oxidative inactivation. Together, these findings provide a mechanistic framework for the protective function of PYROXD1 that maintains the activity of tRNA-LC under aerobic conditions.
Some organisms, like Trichomonas vaginalis, contain mitochondria-related hydrogen-producing organelles, called hydrogenosomes. The protein targeting into these organelles is proposed to be similar to the well-studied mitochondria import. Indeed, S. cerevisiae mitochondria and T. vaginalis hydrogenosomes share some components of protein import complexes. However, it is still unknown whether targeting signals directing substrate proteins to hydrogenosomes can support in other eukaryotes specific mitochondrial localization. To address this issue, we investigated the intracellular localization of three hydrogenosomal tail-anchored proteins expressed in yeast cells. We observed that these proteins were targeted to both mitochondria and ER with a variable dependency on the mitochondrial MIM complex. Our results suggest that the targeting signal of TA proteins are only partially conserved between hydrogenosomes and yeast mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.