Acetylcholine is vital for cognitive functions of the brain. Although its actions in the individual cell are known in some detail, its effects at the network level are poorly understood. The hippocampus, which receives a major cholinergic input from the medial septum/diagonal band, is important in memory and exhibits network activity at 40 Hz during relevant behaviours. Here we show that cholinergic activation is sufficient to induce 40-Hz network oscillations in the hippocampus in vitro. Oscillatory activity is generated spontaneously in the CA3 subfield and can persist for hours. During the oscillatory state, principal neurons fire action potentials that are phase-related to the extracellular oscillation, but each neuron fires in only a small proportion of the cycles. Both excitatory and inhibitory synaptic events participate during the network oscillation in a precise temporal pattern. These results indicate that subcortical cholinergic input can control hippocampal memory processing by inducing fast network oscillations.
Alzheimer’s disease is an increasingly prevalent neurodegenerative disorder whose pathogenesis has been associated with aggregation of the amyloid-β peptide (Aβ42). Recent studies have revealed that once Aβ42 fibrils are generated, their surfaces strongly catalyse the formation of neurotoxic oligomers. Here we show that a molecular chaperone, a Brichos domain, can specifically inhibit this catalytic cycle and limit Aβ42 toxicity. We demonstrate in vitro that Brichos achieves this inhibition by binding to the surfaces of fibrils, thereby redirecting the aggregation reaction to a pathway that involves minimal formation of toxic oligomeric intermediates. We verify that this mechanism occurs in living brain tissue by means of cytotoxicity and electrophysiology experiments. These results reveal that molecular chaperones can help maintain protein homeostasis by selectively suppressing critical microscopic steps within the complex reaction pathways responsible for the toxic effects of protein misfolding and aggregation.
Local-circuit, gamma-aminobutyric acid-releasing inhibitory interneurons of the hippocampus and cortex have traditionally been considered as the regulators of principal neuron activity--the yin to the excitatory yang. Recent evidence indicates that, in addition to that role, their network connectivity and the properties of their intrinsic voltage-gated currents are finely tuned to permit inhibitory interneurons to generate and control the rhythmic output of large populations of both principal cells and other populations of inhibitory interneurons. This review brings together recently described properties and emerging principles of interneuron function that indicate a much more complex role for these cells than just providers of inhibition.
Concomitant application of the cholinergic agonist carbachol and nanomolar doses of kainate can elicit persistent gamma frequency oscillations in all layers of the mouse somatosensory cortex in vitro. Receptor pharmacology with bath‐applied antagonists indicated that oscillatory network activity depended crucially on the participation of cholinergic muscarinic, (S)‐α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA)/kainate and GABAA receptors. The timing of action potentials and the occurrence of excitatory as well as inhibitory postsynaptic events was highly correlated with the phasic change of extracellularly recorded population activity. Firing probability was lowest during the peak negativity of IPSPs and gradually increased during their ensuing decay. In conjunction with the effect of a barbiturate to decrease the frequency of gamma oscillations, this suggests a crucial role of IPSPs in phasing the suprathreshold activity of principal neurons. At nearby (< 1 mm) sites contained within any given cortical layer, oscillatory extra‐ and intracellular activity was highly synchronous with no apparent phase lag. However, interlaminar mapping experiments demonstrated a phase reversal of both extra‐ and intracellularly recorded activity near the lower border of thalamo‐recipient layer 4, thus corroborating findings that have been obtained in vivo. In conclusion, a modest increase of tonic excitatory drive in conjunction with the activation of cholinergic muscarinic receptors can elicit persistent gamma frequency network oscillations in the rodent somatosensory cortex. These findings (re)emphasize the role of the cholinergic ascending system in the cortical processing of sensory information.
Kainate receptors (KARs) play an important role in synaptic physiology, plasticity, and pathological phenomena such as epilepsy. However, the physiological implications for neuronal networks of the distinct expression patterns of KAR subunits are unknown. Using KAR knock-out mice, we show that subunits glutamate receptor (GluR) 5 and GluR6 play distinct roles in kainate-induced gamma oscillations and epileptiform burst activity. Ablation of GluR5 leads to a higher susceptibility of the network to the oscillogenic and epileptogenic effects of kainate, whereas lack of GluR6 prevents kainate-induced gamma oscillations or epileptiform bursts. Based on experimental and simulated neuronal network data as well as the consequences of GluR5 and GluR6 expression for cellular and synaptic physiology, we propose that the functional interplay of GluR5-containing KARs on axons of interneurons and GluR6-containing KARs in the somatodendritic region of both interneurons and pyramidal cells underlie the oscillogenic and epileptogenic effects of kainate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.