BACKGROUND AND PURPOSEHeroin, with low affinity for μ-opioid receptors, has been considered to act as a prodrug. In order to study the pharmacokinetics of heroin and its active metabolites after i.v. administration, we gave a bolus injection of heroin to rats and measured the concentration of heroin and its metabolites in blood and brain extracellular fluid (ECF).
EXPERIMENTAL APPROACHAfter an i.v. bolus injection of heroin to freely moving Sprague-Dawley rats, the concentrations of heroin and metabolites in blood samples from the vena jugularis and in microdialysis samples from striatal brain ECF were measured by ultraperformance LC-MS/MS.
KEY RESULTSHeroin levels decreased very fast, both in blood and brain ECF, and could not be detected after 18 and 10 min respectively. 6-Monoacetylmorphine (6-MAM) increased very rapidly, reaching its maximal concentrations after 2.0 and 4.3 min, respectively, and falling thereafter. Morphine increased very slowly, reaching its maximal levels, which were six times lower than the highest 6-MAM concentrations, after 12.6 and 21.3 min, with a very slow decline during the rest of the experiment and only surpassing 6-MAM levels at least 30 min after injection.
CONCLUSIONS AND IMPLICATIONSAfter an i.v. heroin injection, 6-MAM was the predominant opioid present shortly after injection and during the first 30 min, not only in the blood but also in rat brain ECF. 6-MAM might therefore mediate most of the effects observed shortly after heroin intake, and this finding questions the general assumption that morphine is the main and most important metabolite of heroin.
Abbreviations6-MAM, 6-monoacetylmorphine; AUCLast, area under the concentration-time curve from time zero to last sample time; Cmax, maximum concentration; BBB, blood-brain barrier; Cl, clearance; Cu, concentration of unbound analyte in brain
After injection, heroin is rapidly metabolized to 6-monoacetylmorphine (6-MAM) and further to morphine. As morphine has been shown to increase striatal dopamine, whereas 6-MAM has not been studied in this respect, we gave i.v. injections of 3 μmol 6-MAM, morphine or heroin to rats. Opioids were measured in blood, and dopamine and opioids in microdialysate from brain striatal extracellular fluid (ECF), by UPLC-MS/MS. After 6-MAM injection, 6-MAM ECF concentrations increased rapidly, and reached Cmax of 4.4 μM after 8 min. After heroin injection, 6-MAM increased rapidly in blood and reached Cmax of 6.4 μM in ECF after 8 min, while ECF Cmax for heroin was 1.2 μM after 2 min. T max for morphine in ECF was 29 and 24 min following 6-MAM and heroin administration, respectively, with corresponding Cmax levels of 1 and 2 μM. Dopamine levels peaked after 8 and 14 min following 6-MAM and heroin administration, respectively. The dopamine responses were equal, indicating no dopamine release by heroin per se. Furthermore, 6-MAM, and not morphine, appeared to mediate the early dopamine response, whereas morphine administration, giving rise to morphine ECF concentrations similar to those observed shortly after 6-MAM injection, did not increase ECF dopamine. 6-MAM appeared accordingly to be the substance responsible for the early increase in dopamine observed after heroin injection. As 6-MAM was formed rapidly from heroin in blood, and was the major substance reaching the brain after heroin administration, this also indicates that factors influencing blood 6-MAM concentrations might change the behavioural effects of heroin.
Vitreous humor (VH) is an alternative matrix for drug analysis in forensic toxicology. However, little is known about the distribution of xenobiotics, such as opioids, into VH in living organisms. The aim of this study was to simultaneously measure heroin and metabolite concentrations in blood and VH after injection of heroin in a living pig model. Six pigs were under non-opioid anesthesia during the surgical operation and experiment. Ocular microdialysis was used to acquire dialysate from VH, and a venous catheter was used for blood sampling. Twenty milligrams of heroin was injected intravenously with subsequent sampling of blood and dialysate for 6 h. The samples were analyzed by ultra-performance liquid chromatography–tandem mass spectrometry. Heroin was not detected in VH; 6-monoacetylmorphine (6-MAM) and morphine were first detected in VH after 60 min. The morphine concentration in VH thereafter increased throughout the experimental period. For 6-MAM, Cmax was reached after 230 min in VH. In blood, 6-MAM reached Cmax after 0.5 min, with a subsequent biphasic elimination phase. The blood and VH 6-MAM concentrations reached equilibrium after 2 h. In blood, morphine reached Cmax after 4.3 min, with a subsequent slower elimination than 6-MAM. The blood and VH morphine concentrations were in equilibrium about 6 h after injection of heroin. In conclusion, both 6-MAM and morphine showed slow transport into VH; detection of 6-MAM in VH did not necessarily reflect a recent intake of heroin. Because postmortem changes are expected to be small in VH, these experimental results could assist the interpretation of heroin deaths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.