BackgroundNew fitness trackers and smartwatches are released to the consumer market every year. These devices are equipped with different sensors, algorithms, and accompanying mobile apps. With recent advances in mobile sensor technology, privately collected physical activity data can be used as an addition to existing methods for health data collection in research. Furthermore, data collected from these devices have possible applications in patient diagnostics and treatment. With an increasing number of diverse brands, there is a need for an overview of device sensor support, as well as device applicability in research projects.ObjectiveThe objective of this study was to examine the availability of wrist-worn fitness wearables and analyze availability of relevant fitness sensors from 2011 to 2017. Furthermore, the study was designed to assess brand usage in research projects, compare common brands in terms of developer access to collected health data, and features to consider when deciding which brand to use in future research.MethodsWe searched for devices and brand names in six wearable device databases. For each brand, we identified additional devices on official brand websites. The search was limited to wrist-worn fitness wearables with accelerometers, for which we mapped brand, release year, and supported sensors relevant for fitness tracking. In addition, we conducted a Medical Literature Analysis and Retrieval System Online (MEDLINE) and ClinicalTrials search to determine brand usage in research projects. Finally, we investigated developer accessibility to the health data collected by identified brands.ResultsWe identified 423 unique devices from 132 different brands. Forty-seven percent of brands released only one device. Introduction of new brands peaked in 2014, and the highest number of new devices was introduced in 2015. Sensor support increased every year, and in addition to the accelerometer, a photoplethysmograph, for estimating heart rate, was the most common sensor. Out of the brands currently available, the five most often used in research projects are Fitbit, Garmin, Misfit, Apple, and Polar. Fitbit is used in twice as many validation studies as any other brands and is registered in ClinicalTrials studies 10 times as often as other brands.ConclusionsThe wearable landscape is in constant change. New devices and brands are released every year, promising improved measurements and user experience. At the same time, other brands disappear from the consumer market for various reasons. Advances in device quality offer new opportunities for research. However, only a few well-established brands are frequently used in research projects, and even less are thoroughly validated.
Background: Lack of physical activity (PA) is a risk factor for death and non-communicable disease. Despite this, more than one fourth of adults worldwide do not follow PA guidelines. As part of a feasibility study to test a complex intervention for increasing PA, we included a consumer-based activity tracker (AT) as a tool to measure PA outcomes and to track heart rate during exercise sessions. The aim of the present study was to identify factors that increase wear time when using a consumer-based AT for monitoring of participants in clinical research. Methods: Sixteen participants aged 55-74 years, with obesity, sedentary lifestyle, and elevated cardiovascular risk were recruited to a 12-month feasibility study. Participants wore a Polar M430 AT to collect continuous PA data during a six-month intervention followed by 6 months of follow-up. We performed quantitative wear time analysis, tested the validity of the AT, and completed two rounds of qualitative interviews to investigate how individual wear-time was linked to participant responses. Results: From 1 year of tracking, mean number of valid wear days were 292 (SD = 86), i.e. 80%. The Polar M430 provides acceptable measurements for total energy expenditure. Motivations for increased wear time were that participants were asked to wear it and the ability to track PA progress. Perceived usefulness included time keeping, heart rate-and sleep tracking, becoming more conscious about day-today activity, and improved understanding of which activity types were more effective for energy expenditure. Sources of AT annoyance were measurement inaccuracies and limited instruction for use. Suggestions for improvement were that the AT was big, unattractive, and complicated to use. Conclusions: Adherence to wearing a consumer-based AT was high. Results indicate that it is feasible to use a consumer-based AT to measure PA over a longer period. Potential success factors for increased wear time includes adequate instruction for AT use, allowing participants to choose different AT designs, and using trackers with accurate measurements. To identify accurate trackers, AT validation studies in the target cohort may be needed.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Objectives: Consumer-based accelerometers (activity trackers) are increasingly used in research. The aim of this study was to test the validity of the Polar Vantage watch and Oura ring activity trackers for measuring physical activity (PA), total energy expenditure (EE), resting heart rate (RHR), and sleep duration, when worn by adults in free-living.Design, setting, and participants: Twenty-one participants wore four activity trackers; Polar, Oura, ActiGraph, and Actiheart, and completed a sleep diary for up to seven days. We assessed criterion validity of Polar and Oura when measuring PA, TEE, RHR (Oura), and sleep duration. We analysed repeated measures correlation, Bland-Altman plots, and mean absolute percentage error (MAPE).Results: Polar and Oura were both strongly correlated (p<0.001) with ActiGraph for steps (Polar r 0.75, 95% CI 0.54-0.92. Oura r 0.77, 95% CI 0.62-0.87), moderate-to-vigorous PA (MVPA) (Polar r 0.76, 95% CI 0.62-0.88. Oura r 0.70, 95% CI 0.49-0.82), and TEE (Polar r 0.69, 95% CI 0.48-0.88. Oura r 0.70, 95% CI 0.51-0.83) and strongly or very strongly correlated (p<0.001) with the sleep diary for sleep duration (Polar r 0.74, 95% CI 0.56-0.88. Oura r 0.82, 95% CI 0.68-0.91). Oura was very strongly correlated (p<0.001) with Actiheart for RHR (r 0.9, 95% CI 0.85-0.96). MAPE was high for all variables except Oura sleep duration (10%), and RHR (3%) where Oura under-reported on average one beat per minute. Conclusions:Oura can potentially be used as an alternative to Actiheart to measure RHR. For sleep duration, Polar and Oura can potentially be used as a replacement for a manual sleep diary. Neither Polar nor Oura can replace ActiGraph for measuring steps, MVPA, and TEE, but may be used as an additional source of PA in some settings. Article Summary Strengths and limitations of this study Major strength is the analysis of multiple days of recordings instead of one mean measure per participant Wide ranges of participant age, height, weight, body mass index, and gender balance Main limitation is the use of criteria validated using gold standards, but are not themselves considered gold standard in all settings
Background Accelerometers, often in conjunction with heart rate sensors, are extensively used to track physical activity (PA) in research. Research-grade instruments are often expensive and have limited battery capacity, limited storage, and high participant burden. Consumer-based activity trackers are equipped with similar technology and designed for long-term wear, and can therefore potentially be used in research. Objective We aimed to assess the criterion validity of the Polar M430 sport watch, compared with 2 research-grade instruments (ActiGraph and Actiheart), worn on 4 different locations using 1- and 3-axis accelerometers. Methods A total of 50 participants wore 2 ActiGraphs (wrist and hip), 2 Actihearts (upper and lower chest position), and 1 Polar M430 sport watch for 1 full day. We compared reported time (minutes) spent in sedentary behavior and in light, moderate, vigorous, and moderate to vigorous PA, step counts, activity energy expenditure, and total energy expenditure between devices. We used Pearson correlations, intraclass correlations, mean absolute percentage errors (MAPEs), and Bland-Altman plots to assess criterion validity. Results Pearson correlations between the Polar M430 and all research-grade instruments were moderate or stronger for vigorous PA (r range .59-.76), moderate to vigorous PA (r range .51-.75), steps (r range .85-.87), total energy expenditure (r range .88-.94), and activity energy expenditure (r range .74-.79). Bland-Altman plots showed higher agreement for higher intensities of PA. MAPE was high for most outcomes. Only total energy expenditure measured by the hip-worn ActiGraph and both Actiheart positions had acceptable or close to acceptable errors with MAPEs of 6.94% (ActiGraph, 3 axes), 8.26% (ActiGraph, 1 axis), 14.54% (Actiheart, upper position), and 14.37% (Actiheart, lower position). The wrist-worn ActiGraph had a MAPE of 15.94% for measuring steps. All other outcomes had a MAPE of 22% or higher. For most outcomes, the Polar M430 was most strongly correlated with the hip-worn triaxial ActiGraph, with a moderate or strong Pearson correlation for sedentary behavior (r=.52) and for light (r=.7), moderate (r=.57), vigorous (r=.76), and moderate to vigorous (r=.75) PA. In addition, correlations were strong or very strong for activity energy expenditure (r=.75), steps (r=.85), and total energy expenditure (r=.91). Conclusions The Polar M430 can potentially be used as an addition to established research-grade instruments to collect some PA variables over a prolonged period. However, due to the high MAPE of most outcomes, only total energy expenditure can be trusted to provide close to valid results. Depending on the variable, the Polar M430 over- or underreported most metrics, and may therefore be better suited to report changes in PA over time for some outcomes, rather than as an accurate instrument for PA status in a population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.