Finding creative solutions to difficult problems is a fundamental aspect of human culture and a skill highly needed. However, the exact neural processes underlying creative problem solving remain unclear. Insightful problem solving tasks were shown to be a valid method for investigating one subcomponent of creativity: the Aha!‐moment. Finding insightful solutions during a remote associates task (RAT) was found to elicit specific cortical activity changes. Considering the strong affective components of Aha!‐moments, as manifested in the subjectively experienced feeling of relief following the sudden emergence of the solution of the problem without any conscious forewarning, we hypothesized the subcortical dopaminergic reward network to be critically engaged during Aha. To investigate those subcortical contributions to insight, we employed ultra‐high‐field 7 T fMRI during a German Version of the RAT. During this task, subjects were exposed to word triplets and instructed to find a solution word being associated with all the three given words. They were supposed to press a button as soon as they felt confident about their solution without further revision, allowing us to capture the exact event of Aha!‐moment. Besides the finding on cortical involvement of the left anterior middle temporal gyrus (aMTG), here we showed for the first time robust subcortical activity changes related to insightful problem solving in the bilateral thalamus, hippocampus, and the dopaminergic midbrain comprising ventral tegmental area (VTA), nucleus accumbens (NAcc), and caudate nucleus. These results shed new light on the affective neural mechanisms underlying insightful problem solving.
Creativity is a sine qua non ability for almost all aspects of everyday life. Although very profound behavioural models were provided by 21th century psychologists, the neural correlates of these personality features associated with creativity are largely unknown. Recent models suggest strong relationships between dopamine release and various creative skills. Herein, we employed functional connectivity analyses of resting-state functional magnetic imaging data in order to shed light on these neural underpinnings of creative aspects. For improved sensitivity, we performed the study at ultra-high magnetic field (7 Tesla). Seed regions were defined based on subcortical (ventral tegmental area/substantia nigra, nucleus caudatus) activation foci of a remote associates task (RAT). In addition, bilateral PCC was used as seed region to examine the default-mode network. Network strength across subjects was regressed against a battery of psychological variables related to creativity. Dopaminergic network variations turned out to be indicative for individual differences in creative traits. In this regard, the caudate network showed stronger connectivity in individuals with higher extraversion measures, while connectivity with the midbrain network was found increased with higher ideational behaviour and emotional stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.