Software popularity is a valuable information to modern open source developers, who constantly want to know if their systems are attracting new users, if new releases are gaining acceptance, or if they are meeting user's expectations.In this paper, we describe a study on the popularity of software systems hosted at GitHub, which is the world's largest collection of open source software. GitHub provides an explicit way for users to manifest their satisfaction with a hosted repository: the stargazers button. In our study, we reveal the main factors that impact the number of stars of GitHub projects, including programming language and application domain. We also study the impact of new features on project popularity. Finally, we identify four main patterns of popularity growth, which are derived after clustering the time series representing the number of stars of 2,279 popular GitHub repositories. We hope our results provide valuable insights to developers and maintainers, which could help them on building and evolving systems in a competitive software market.
Abstract-Truck Factor (TF) is a metric proposed by the agile community as a tool to identify concentration of knowledge in software development environments. It states the minimal number of developers that have to be hit by a truck (or quit) before a project is incapacitated. In other words, TF helps to measure how prepared is a project to deal with developer turnover. Despite its clear relevance, few studies explore this metric. Altogether there is no consensus about how to calculate it, and no supporting evidence backing estimates for systems in the wild. To mitigate both issues, we propose a novel (and automated) approach for estimating TF-values, which we execute against a corpus of 133 popular project in GitHub. We later survey developers as a means to assess the reliability of our results. Among others, we find that the majority of our target systems (65%) have TF ≤ 2. Surveying developers from 67 target systems provides confidence towards our estimates; in 84% of the valid answers we collect, developers agree or partially agree that the TF's authors are the main authors of their systems; in 53% we receive a positive or partially positive answer regarding our estimated truck factors.
Modern software development depends on APIs to reuse code and increase productivity. As most software systems, these libraries and frameworks also evolve, which may break existing clients. However, the main reasons to introduce breaking changes in APIs are unclear. Therefore, in this paper, we report the results of an almost 4-month long field study with the developers of 400 popular Java libraries and frameworks. We configured an infrastructure to observe all changes in these libraries and to detect breaking changes shortly after their introduction in the code. After identifying breaking changes, we asked the developers to explain the reasons behind their decision to change the APIs. During the study, we identified 59 breaking changes, confirmed by the developers of 19 projects. By analyzing the developers' answers, we report that breaking changes are mostly motivated by the need to implement new features, by the desire to make the APIs simpler and with fewer elements, and to improve maintainability. We conclude by providing suggestions to language designers, tool builders, software engineering researchers and API developers.
GitHub is the largest source code repository in the world. It provides a git-based source code management platform and also many features inspired by social networks. For example, GitHub users can show appreciation to projects by adding stars to them. Therefore, the number of stars of a repository is a direct measure of its popularity. In this paper, we use multiple linear regressions to predict the number of stars of GitHub repositories. These predictions are useful both to repository owners and clients, who usually want to know how their projects are performing in a competitive open source development market. In a large-scale analysis, we show that the proposed models start to provide accurate predictions after being trained with the number of stars received in the last six months. Furthermore, specific models-generated using data from repositories that share the same growth trends-are recommended for repositories with slow growth and/or for repositories with less stars. Finally, we evaluate the ability to predict not the number of stars of a repository but its rank among the GitHub repositories. We found a very strong correlation between predicted and real rankings (Spearman's rho greater than 0.95).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.