This work investigates the fitting performance of conventional rheological models and the development of multivariable rheological models to reproduce experimental rheological data of different industrial grades of linear isotactic polypropylene (iPP) having high mass average molar masses, Mm (164–404 kg mol−1), at three temperature values (180–220 °C) over a wide range of shear rates (10−1–104 s−1). A shear thinning behavior is found in all investigated conditions. However, a low shear rate primary Newtonian plateau for a short shear rate range is only identified for the smallest Mm among those investigated, and for higher Mm such primary plateaus are even found at shorter shear rate range. Among the investigated models, only Cross and Carreau–Yasuda models are effective to reproduce the data for a specific PP grade. Two modified models are proposed that incorporate three variables. In the modified Cross Model, it has been shown that the characteristic time (λ) between the Newtonian plateau at the low shear rates and the shear‐rate range with shear‐thinning behavior depends exponentially on the Mm, and it does not depend on the temperature. Both proposed models fit very well with the experimental data with shear thinning behavior for a wide range of Mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.