Seroquel and the atypical antipsychotic clozapine were compared using a number of biochemical measures in rats which are indicative of potential antipsychotic activity and possible extrapyramidal side effect liability. Both in vitro and in vivo, these compounds are low potency D-2 dopamine (DA) receptor antagonists and are relatively more potent 5-HT2 antagonists than typical antipsychotic drugs. Seroquel also exhibited low affinity for D-1 DA receptors in vitro, but D-1 receptor occupancy was not detectable in vivo. Unlike clozapine, Seroquel lacks appreciable activity at either D-1 DA or muscarinic receptors. Following IP administration, both compounds produce similar elevations in DA metabolite concentrations. Following 1 month of daily administration, at doses which produce large increases in striatal DA metabolite concentrations, both Seroquel and clozapine fail, unlike typical antipsychotics, to increase the number of striatal D-2 receptors, but do decrease the number of 5-HT2 receptors in frontal cortex. ICI 204,636 produces a short-lasting increase in plasma prolactin levels, but these increases are much greater than those that are produced by clozapine. One day after 3 weeks of daily administration, tolerance, to the ability of Seroquel to elevate DA metabolite and plasma PRL concentrations is not observed. These biochemical observations are discussed with regard to the atypical profile of Seroquel in behavioral and electrophysiological studies.
Current evidence indicates that glutamate acting via the N-methyl-D-aspartate (NMDA) receptor/ion channel complex plays a major role in the neuronal degeneration associated with a variety of neurological disorders. In this report the role of glycine in NMDA neurotoxicity was examined. We demonstrate that NMDA-mediated neurotoxicity is markedly potentiated by glycine and other amino acids, e.g., D-serine. Putative glycine antagonists HA-966 and 7-chlorokynurenic acid were highly effective in preventing NMDA neurotoxicity, even in the absence of added glycine. The neuroprotective action of HA-966 and 7-chlorokynurenic acid, but not that of NMDA antagonists 3-(2-carboxypiperazine-4-yl)propylphosphonate and MK-801, could be reversed by glycine. These results indicate that glycine, operating through a strychinine-insensitive glycine site, plays a central permissive role in NMDA-mediated neurotoxicity.
A series of 1-substituted 4-amino-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid esters and amides were synthesized and screened for anxiolytic activity in the shock-induced suppression of drinking (SSD) test. The compounds were also tested for their ability to displace [3H]flunitrazepam (FLU) from brain benzodiazepine (BZ) binding sites. Many compounds were active in these screens and, additionally, demonstrated a selectivity for the type 1 BZ (BZ1) receptor over the type 2 BZ (BZ2) receptor as indicated by Hill coefficients significantly less than unity and by analysis of [3H]FLU binding results from different brain regions. Based on the results of structure-activity studies of these compounds, a hypothesis was proposed to explain the structural features necessary for optimal interaction with brain BZ receptors. A detailed pharmacological evaluation of one of the most potent behaviorally active compounds (27) demonstrated it to be BZ1 selective; also, in comparison to diazepam, 27 showed minimal sedative and alcohol interactive properties at therapeutically effective doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.