Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.
To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
Modern sequencing technology now allows biologists to collect the entirety of molecular evidence for reconstructing evolutionary trees. We introduce a novel, user-friendly software package engineered for conducting state-of-the-art Bayesian tree inferences on data sets of arbitrary size. Our software introduces a nonblocking parallelization of Metropolis-coupled chains, modifications for efficient analyses of data sets comprising thousands of partitions and memory saving techniques. We report on first experiences with Bayesian inferences at the whole-genome level using the SuperMUC supercomputer and simulated data.
The presence of rogue taxa (rogues) in a set of trees can frequently have a negative impact on the results of a bootstrap analysis (e.g., the overall support in consensus trees). We introduce an efficient graph-based algorithm for rogue taxon identification as well as an interactive webservice implementing this algorithm. Compared with our previous method, the new algorithm is up to 4 orders of magnitude faster, while returning qualitatively identical results. Because of this significant improvement in scalability, the new algorithm can now identify substantially more complex and compute-intensive rogue taxon constellations. On a large and diverse collection of real-world data sets, we show that our method yields better supported reduced/pruned consensus trees than any competing rogue taxon identification method. Using the parallel version of our open-source code, we successfully identified rogue taxa in a set of 100 trees with 116 334 taxa each. For simulated data sets, we show that when removing/pruning rogue taxa with our method from a tree set, we consistently obtain bootstrap consensus trees as well as maximum-likelihood trees that are topologically closer to the respective true trees.
BackgroundDespite considerable progress in systematics, a comprehensive scenario of the evolution of phenotypic characters in the mega-diverse Holometabola based on a solid phylogenetic hypothesis was still missing. We addressed this issue by de novo sequencing transcriptome libraries of representatives of all orders of holometabolan insects (13 species in total) and by using a previously published extensive morphological dataset. We tested competing phylogenetic hypotheses by analyzing various specifically designed sets of amino acid sequence data, using maximum likelihood (ML) based tree inference and Four-cluster Likelihood Mapping (FcLM). By maximum parsimony-based mapping of the morphological data on the phylogenetic relationships we traced evolutionary transformations at the phenotypic level and reconstructed the groundplan of Holometabola and of selected subgroups.ResultsIn our analysis of the amino acid sequence data of 1,343 single-copy orthologous genes, Hymenoptera are placed as sister group to all remaining holometabolan orders, i.e., to a clade Aparaglossata, comprising two monophyletic subunits Mecopterida (Amphiesmenoptera + Antliophora) and Neuropteroidea (Neuropterida + Coleopterida). The monophyly of Coleopterida (Coleoptera and Strepsiptera) remains ambiguous in the analyses of the transcriptome data, but appears likely based on the morphological data. Highly supported relationships within Neuropterida and Antliophora are Raphidioptera + (Neuroptera + monophyletic Megaloptera), and Diptera + (Siphonaptera + Mecoptera). ML tree inference and FcLM yielded largely congruent results. However, FcLM, which was applied here for the first time to large phylogenomic supermatrices, displayed additional signal in the datasets that was not identified in the ML trees.ConclusionsOur phylogenetic results imply that an orthognathous larva belongs to the groundplan of Holometabola, with compound eyes and well-developed thoracic legs, externally feeding on plants or fungi. Ancestral larvae of Aparaglossata were prognathous, equipped with single larval eyes (stemmata), and possibly agile and predacious. Ancestral holometabolan adults likely resembled in their morphology the groundplan of adult neopteran insects. Within Aparaglossata, the adult’s flight apparatus and ovipositor underwent strong modifications. We show that the combination of well-resolved phylogenies obtained by phylogenomic analyses and well-documented extensive morphological datasets is an appropriate basis for reconstructing complex morphological transformations and for the inference of evolutionary histories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.