Existing neural explanations of spontaneous percept switching under steady viewing of an ambiguous stimulus do not fit the fact that stimulus interruptions cause the same percept to reappear across many ON/OFF cycles. We present a simple neural model that explains the observed behavior and predicts several more complicated percept sequences, without invoking any "high-level" decision making or memory. Percept choice at stimulus onset, which differs fundamentally from standard percept switching, depends crucially on a hitherto neglected interaction between local "shunting" adaptation and a near-threshold neural baseline. Stimulus ON/OFF timing then controls the generation of repeating, alternating, or more complex choice sequences. Our model also explains "priming" versus "habituation" effects on percept choice, reinterprets recent neurophysiological data, and predicts the emergence of hysteresis at the level of percept sequences, with occasional noise-induced sequence "hopping."
When our two eyes view incongruent images, we experience binocular rivalry: An ongoing cycle of dominance periods of either image and transition periods when both are visible. Two key forces underlying this process are adaptation of and inhibition between the images' neural representations. Models based on these factors meet the constraints posed by data on dominance periods, but these are not very stringent. We extensively studied contrast dependence of dominance and transition durations and that of the occurrence of return transitions: Occasions when an eye loses and regains dominance without intervening dominance of the other eye. We found that dominance durations and the incidence of return transitions depend similarly on contrast; transition durations show a different dependence. Regarding dominance durations, we show that the widely accepted rule known as Levelt's second proposition is only valid in a limited contrast range; outside this range, the opposite of the proposition is true. Our data refute current models, based solely on adaptation and inhibition, as these cannot explain the long and reversible transitions that we find. These features indicate that noise is a crucial force in rivalry, frequently dominating the deterministic forces.
When visual input is inconclusive, does previous experience aid the visual system in attaining an accurate perceptual interpretation? Prolonged viewing of a visually ambiguous stimulus causes perception to alternate between conflicting interpretations. When viewed intermittently, however, ambiguous stimuli tend to evoke the same percept on many consecutive presentations. This perceptual stabilization has been suggested to reflect persistence of the most recent percept throughout the blank that separates two presentations. Here we show that the memory trace that causes stabilization reflects not just the latest percept, but perception during a much longer period. That is, the choice between competing percepts at stimulus reappearance is determined by an elaborate history of prior perception. Specifically, we demonstrate a seconds-long influence of the latest percept, as well as a more persistent influence based on the relative proportion of dominance during a preceding period of at least one minute. In case short-term perceptual history and long-term perceptual history are opposed (because perception has recently switched after prolonged stabilization), the long-term influence recovers after the effect of the latest percept has worn off, indicating independence between time scales. We accommodate these results by adding two positive adaptation terms, one with a short time constant and one with a long time constant, to a standard model of perceptual switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.